2023届云南省丘北县民中数学高一上期末统考试题含解析_第1页
2023届云南省丘北县民中数学高一上期末统考试题含解析_第2页
2023届云南省丘北县民中数学高一上期末统考试题含解析_第3页
2023届云南省丘北县民中数学高一上期末统考试题含解析_第4页
2023届云南省丘北县民中数学高一上期末统考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知一扇形的周长为28,则该扇形面积的最大值为()A.36 B.42C.49 D.562.已知为三角形内角,且,若,则关于的形状的判断,正确的是A.直角三角形 B.锐角三角形C.钝角三角形 D.三种形状都有可能3.设函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值是()A.4π B.2πC.π D.4.设,则的大小关系是()A. B.C. D.5.已知函数,若函数在上有三个零点,则的最大值为A. B.C. D.6.设,则A. B.C. D.7.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于()A. B.C. D.8.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是()A. B.C. D.9.设全集,集合,则()A. B.C. D.10.的值等于A. B.C. D.11.若,则等于A. B.C. D.12.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法“三斜求积术”,即的面积,其中分别为的内角的对边,若,且,则的面积的最大值为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设平行于轴的直线分别与函数和的图像相交于点,,若在函数的图像上存在点,使得为等边三角形,则点的纵坐标为_________.14.已知函数在区间是单调递增函数,则实数的取值范围是______15.幂函数的图象经过点,则________16.已知向量=(1,2)、=(2,λ),,∥,则λ=______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知集合,(1)若,求实数a,b满足的条件;(2)若,求实数m的取值范围18.已知函数.(1)若的图象恒在直线上方,求实数的取值范围;(2)若不等式在区间上恒成立,求实数的取值范围.19.已知集合,或,.(1)求,;(2)求.20.若函数有两个零点,则实数的取值范围是_____.21.(1)已知,,,求的最小值;(2)把角化成的形式.22.已知函数(其中,,)图象上两相邻最高点之间距离为,且点是该函数图象上的一个最高点(1)求函数的解析式;(2)把函数的图象向右平移个单位长度,得到函数的图象,若恒有,求实数的最小值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】由题意,根据扇形面积公式及二次函数的知识即可求解.【详解】解:设扇形的半径为R,弧长为l,由题意得,则扇形的面积,所以该扇形面积的最大值为49,故选:C.2、C【解析】利用同角平方关系可得,,结合可得,从而可得的取值范围,进而可判断三角形的形状【详解】解:,,为三角形内角,,为钝角,即三角形为钝角三角形故选C【点睛】本题主要考查了利用同角平方关系的应用,其关键是变形之后从的符号中判断的取值范围,属于三角函数基本技巧的运用3、C【解析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值为函数的半个周期,根据周期公式可得答案【详解】函数,∵对任意x∈R都有f(x1)≤f(x)≤f(x2),∴f(x1)是最小值,f(x2)是最大值;∴|x1﹣x2|的最小值为函数的半个周期,∵T=2π,∴|x1﹣x2|的最小值为π,故选:C.4、B【解析】利用“”分段法确定正确选项.【详解】,,所以.故选:B5、C【解析】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,画出函数图像,结合图象进而求得答案【详解】因为在上有三个零点,所以在上有三个不同的解,即函数与的图象在上有三个不同的交点,结合函数图象可知,当直线经过点时,取得最小值,从而取得最大值,且.【点睛】本题考查函数的零点问题,解题的关键是得出函数与的图象在上有三个不同的交点,属于一般题6、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小7、B【解析】求圆心角的弧度数,再由弧长公式求弧长.【详解】∵圆心角为,∴圆心角的弧度数为,又扇形的半径为2,∴该扇形的弧长,故选:B.8、D【解析】根据直线的斜率与倾斜角的关系即可求解.【详解】解:由题意,根据直线的斜率与倾斜角的关系有:当或时,或,故选项B可能成立;当时,,故选项A可能成立;当时,,故选项C可能成立;所以选项D不可能成立.故选:D.9、A【解析】根据补集定义计算.【详解】因为集合,又因为全集,所以,.故选:A.【点睛】本题考查补集运算,属于简单题.10、C【解析】因为,所以可以运用两角差的正弦公式、余弦公式,求出的值.【详解】,,,故本题选C.【点睛】本题考查了两角差的正弦公式、余弦公式、以及特殊角的三角函数值.其时本题还可以这样解:,.11、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题12、A【解析】先根据求出关系,代入面积公式,利用二次函数的知识求解最值.【详解】因为,所以,即;由正弦定理可得,所以;当时,取到最大值.故选:A.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】设直线的方程为,求得点,坐标,得到,取的中点,连接,根据三角形为等边三角形,表示出点坐标,根据点在函数的图象上,得到关于的方程,求出,进而可得点的纵坐标.【详解】设直线的方程为,由,得,所以点,由,得,所以点,从而,如图,取的中点,连接,因为为等边三角形,则,所以,,则点,因为点在函数的图象上,则,解得,所以点的纵坐标为.故答案为:.【点睛】关键点点睛:求解本题的关键在于先由同一参数表示出点坐标,再代入求解;本题中,先设直线,分别求出,坐标,得到等边三角形的边长,由此用表示出点坐标,即可求解.14、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间单调递增函数,则,故答案为:.15、【解析】设幂函数的解析式,然后代入求解析式,计算.【详解】设,则,解得,所以,得故答案为:16、-2【解析】首先由的坐标,利用向量的坐标运算可得,接下来由向量平行的坐标运算可得,求解即可得结果【详解】∵,∴,∵∥,,∴,解得,故答案为:-2三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),;(2).【解析】(1)直接利用并集结果可得,;(2)根据可得,再对集合的解集情况进行分类讨论,即可得答案;【详解】解:(1);,∴,;(2),∴分情况讨论①,即时得;②若,即,中只有一个元素1符合题意;③若,即时得,∴∴综上【点睛】由集合间的基本关系求参数时,注意对可变的集合,分空集和不为空集两种情况.18、(1);(2).【解析】(1)根据给定条件可得恒成立,再借助判别式列出不等式求解即得.(2)根据给定条件列出不等式,再分离参数,借助函数的单调性求出函数值范围即可推理作答.【小问1详解】因函数的图象恒在直线上方,即,,于是得,解得,所以实数的取值范围是:.【小问2详解】依题意,,,令,,令函数,,,,而,即,,则有,即,于是得在上单调递增,因此,,,即,从而有,则,所以实数的取值范围是.19、(1)或,(2)【解析】(1)根据并集和交集定义即可求出;(2)根据补集交集定义可求.【小问1详解】因为,或,所以或,;【小问2详解】或,,所以.20、【解析】函数有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么21、(1);(2).【解析】(1)利用基本不等式可求得的最小值;(2)将角度化为弧度,再将弧度化为的形式即可.【详解】解:(1)因为,,,,当且仅当时,等号成立,故的最小值为;(2),.22、(1)(2)最小值为4【解析】(1)由图象上两相邻最高点之间的距离为,可知周期,点是该函数图象上的一个最高点,可知,故,将

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论