立体几何初步(知识点梳理)_第1页
立体几何初步(知识点梳理)_第2页
立体几何初步(知识点梳理)_第3页
立体几何初步(知识点梳理)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

春季高考立体几何部分知识点梳理及历年试题一.线面之间空间关系及证明方法A.线//线的证明方法1.将两条直线放到一个平面内(或者转移到同一平面内)利用平行四边形或者三角形的中位线来证明2.一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.(线//面线//线)3.如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面//面线//线)4.垂直于同一个平面的两条直线平行。B.线⊥线的证明方法1.异面直线平移到一个平面内证明垂直2.一条直线垂直于一个平面,则这条直线与平面内任意直线垂直.(线⊥面线⊥线)C.线//面的证明方法1.平面外一直线与平面内一直线平行,则该直线与此平面平行.(线//线线//面)2.如果两个平面平行,那么其中一平面内的任一直线平行于另一平面(面//面线//面)D.线⊥面的证明方法1.一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(线⊥线线⊥面)2.两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面(面⊥面线⊥面)E.面//面的证明方法1.一个平面内有两条相交直线与另一个平面平行,则这两平面平行(线//面面//面)2.如果一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行(线//线面//面)3.垂直于同一条直线的两个平面平行。4.平行于同一个平面的两个平面平行。F.面⊥面的证明方法1.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(线⊥面面⊥面)二.各几何体的体积公式柱体(圆柱,棱柱)V=s∙h其中s为底面积,h为高椎体(圆柱,棱柱)V=13s∙h其中s球体体积V=43πr2023年春考真题23.已知空间四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,给出下列四个命题:1.AC与BD是相交直线2.AB//DC3.四边形EFGH是平行四边形4.EH//平面BCD其中真命题的个数是A.4B.3C.2D.1解析:如图AC与BD没有相交,是异面直线。所以1错;AB和DC也是异面直线,所以2错。根据三角形中位线EH//BD,FG//BD,所以EH//FG,同理HG//EF,所以四边形EFGH是平行四边形是正确的;因为EH//FG,所以EH//平面BCD正确(平面外一直线与平面内一直线平行,则该直线与此平面平行)。综合来看正确的命题有2个,答案选C2023年春考真题28题已知圆锥的底面半径为1,高为3,则该圆锥的体积是_________.解析:V=V=13s∙h=V=132023年春考真题33题33.如图所示,已知正四棱锥S-ABCD,E,F分别是棱柱SA,SC的中点。求证(1)EF//平面ABCD(2)EF⊥平面SBD解析:(1)连接AC交BD于P,在∆SAC中E,F分别是棱柱SA,SC的中点,所以在三角形中中位线EF//AC。因为AC⊂面ABCD,EF⊄面ABCD,所以EF//平面ABCD(平面外一直线与平面内一直线平行,则该直线与此平面平行.)(2)连接SP,因为p是正四棱锥S-ABCD的中心,所以SP⊥面ABCD,所以SP⊥AP,又因为在正方形ABCD中AP⊥BD,所以AP⊥面SBD(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直),因为EF//AP,所以EF⊥平面SBD2023年春考真题18题18.下列四个命题:(1).过平面外一点,有且只有一条直线与已知平面平行;(2).过平面外一点,有且只有一条直线与已知平面平垂直;(3).平行于同一个平面的两个平面平行;(4).垂直于同一个平面的两个平面平行。其中真命题的个数是()A.1B.2C.3D.4解析:过平面外一点可以有很多条直线与已知平面平行,这些直线可以构成一个平面与已知平面平行所以(1)错。垂直于同一个平面的两个平面也可以垂直,例如墙角上的三个面。所以真命题的个数为2个。28.一个球的体积与其表面积的数值恰好相等,该球的直径是___________.解析:设球的半径为r,球体体积V=43πr3,表面积S=4πr2有等式432023年春考真题33题33.如图所示,已知棱长为1的正方体ABCD-A1B1C1D1(1)求三棱锥C1-BCD的体积(2)求证平面C1BD⊥平面A1B1CD解析:(1)VC1-BCD=13S∆BCD∙CC1=13×((2)证明:在正方体ABCD-A1B1C1D1中棱A1B1⊥面BB1CC1,所以A1B1⊥BC1(一条直线垂直于一个平面,则这条直线与平面内任意直线垂直)在正方形BB1CC1中BC1⊥CB1,又因为A1B1与CB1相交于B1,所以BC1⊥平面A1B1CD,(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直)面C1BD过直线BC1,所以平面C1BD⊥平面A1B1CD(如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直)2023年春考真题17题17.正方体的棱长为2,下列结论正确的是(A)异面直线AD1与CD所成的角为45°(B)直线AD1与平面ABCD所成的角为60°(C)直线AD1与CD1所成的角为90°(D)VD1-ACD=4解析:A中的异面直线问题要将异面直线转移到一个平面内,观察图形因为CD//C1D1所以异面直线AD1与CD所成的角转成异面直线AD1与C1D1所成的角,即角AD1C1。因为C1D1⊥面AA1DD1,所以C1D1⊥AD1,角AD1C1=90°B考察的是线与面成的角。因为DD1⊥面ABCD,所以直线AD1与平面ABCD所成的角为角DAD1,为45°C中直线AD1与CD1还有直线AC构成了等边三角形,所以AD1与CD1所成的角为60°D中VD1-ACD=13×综上,D答案正确。2023年春考真题24题24.如一个圆锥的侧面展开图是面积为8π的半圆面,则该圆锥的体积为________.解析:如图圆的面积公式为πr2,根据半圆面积8π解得半径r=4,半圆的周长为πr=4π,这4π要充当圆锥底面的周长,所以圆锥底面的半径R为2,在圆锥中母线r=4,解出h=12=23,所以圆锥的体积为V=13πR2∙h2023年春考真题29题29.如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AD,E为PD中点,AB//CD且AB=12CD,AB⊥AD。求证:(1)AE⊥平面PCD(2)AE//平面PBC解析:(1)因为PA⊥平面ABCD,所以PA⊥AB,因为AB⊥AD,所以AB⊥面PAD,因为AB//CD所以CD⊥面PAD,所以CD⊥AE在三角形APD中PA=AD,且E为等腰三角形的中点,所以AE⊥PD,因为CD与PD相交于D所以AE⊥平面PCD(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直)(2)如图取PC的中点F,分别连接EF和B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论