版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
商洛市2021~2022学年度第一学期期末教学质量检测高一数学考生注意:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填写在答题卡上.3.本试卷主要考试内容:必修1和必修2.第I卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】【分析】求出集合B,再根据交集的定义即可得解.【详解】解:因为,所以.故选:A.2.若直线与直线垂直,则()A.6 B.4 C. D.【答案】A【解析】【分析】由两条直线垂直的条件可得答案.【详解】由题意可知,即.故选:A.3.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:1245612313615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4) C.(4,5) D.(5,6)【答案】C【解析】【分析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点.故选:C.4.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形【答案】B【解析】【分析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断.【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误.故选:B5.已知,,,则()A. B. C. D.【答案】A【解析】【分析】借助中间量比较大小即可.【详解】解:因为,,,所以.故选:A6.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若取3.14,则圆柱的母线长约为()A.0.38寸 B.1.15寸 C.1.53寸 D.4.59寸【答案】C【解析】【分析】先求出长方体的体积,进而求出圆柱的体积,利用求出的圆柱体体积和圆柱的底面半径为0.5寸,求出圆柱的母线长【详解】由题意得,长方体的体积为(立方寸),故圆柱的体积为(立方寸).设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,得,计算得:(寸).故选:C7.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B. C.4 D.【答案】D【解析】【分析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.8.若函数满足,,则下列判断错误的是()A. B.C.图象的对称轴为直线 D.f(x)的最小值为-1【答案】C【解析】【分析】根据已知求出,再利用二次函数的性质判断得解.【详解】解:由题得,解得,,所以,因为,所以选项A正确;所以,所以选项B正确;因为,所以选项D正确;因为的对称轴为,所以选项C错误.故选:C9.尽管目前人类还无法精准预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级之间的关系式为.年月日,日本东北部海域发生里氏级地震,它所释放出来的能量是年月日我国四川九寨沟县发生里氏级地震的()A.倍 B.倍 C.倍 D.倍【答案】C【解析】【分析】设里氏级和级地震释放出的能量分别为和,可得出,利用对数的运算性质可求得的值,即可得解.【详解】设里氏级和级地震释放出的能量分别为和,由已知可得,则,故.故选:C.10.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B. C. D.【答案】B【解析】【分析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径.设关于直线的对称点为,则解得,则.因为,分别在圆和圆上,所以,,则.因为,所以.故选:B.11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积为()A. B.C. D.【答案】D【解析】【分析】借助正方体模型还原几何体,进而求解表面积即可.【详解】解:如图,在边长为的正方体模型中,将三视图还原成直观图为三棱锥,其中,均为直角三角形,为等边三角形,,所以该几何体的表面积为.故选:D12.已知函数,函数有四个不同的的零点,,,,且,则()A.a的取值范围是(0,) B.的取值范围是(0,1)C. D.【答案】D【解析】【分析】将问题转化为与有四个不同的交点,应用数形结合思想判断各交点横坐标的范围及数量关系,即可判断各选项的正误.【详解】有四个不同的零点、、、,即有四个不同的解.的图象如下图示,由图知:,所以,即的取值范围是(0,+∞).由二次函数的对称性得:,因为,即,故.故选:D【点睛】关键点点睛:将零点问题转化为函数交点问题,应用数形结合判断交点横坐标的范围或数量关系.第II卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上.13.在空间直角坐标系中,点A到坐标原点距离为2,写出点A的一个坐标:____________.【答案】(2,0,0)(答案不唯一)【解析】【分析】利用空间两点间的距离求解.【详解】解:设,因为点A到坐标原点的距离为2,所以,故答案为:(2,0,0)(答案不唯一)14.已知直线与圆C:相交于A,B两点,则|AB|=____________.【答案】6【解析】【分析】先求圆心到直线的距离,再根据弦心距、半径、弦长的几何关系求|AB|.【详解】因为圆心C(3,1)到直线的距离,所以.故答案为:615.若,则__________.【答案】【解析】【分析】先求出的值,然后再运用对数的运算法则求解出和的值,最后求解答案.【详解】若,则,所以.故答案为:【点睛】本题考查了对数的运算法则,熟练掌握对数的各运算法则是解题关键,并能灵活运用法则来解题,并且要计算正确,本题较为基础.16.在棱长为2的正方体ABCD-中,E,F,G,H分别为棱,,,的中点,将该正方体挖去两个大小完全相同的四分之一圆锥,得到如图所示的几何体,现有下列四个结论:①CG//平面ADE;②该几何体的上底面的周长为;③该几何体的的体积为;④三棱锥F-ABC的外接球的表面积为.其中所有正确结论的序号是____________.【答案】①③④【解析】【分析】由面面平行的性质判断①;由题设知两段圆弧的长度之和为,即可得上底周长判断②;利用正方体体积及圆锥体积的求法求几何体体积判断③;首先确定外接球球心位置,进而求出球体的半径,即可得F-ABC的外接球的表面积判断④.【详解】因为面面,面,所以CG//平面,即CG//平面ADE,①正确;依题意知,弧EF与弧HG均为圆弧,且这两段圆弧的长度之和为,所以该几何体的上底面的周长为,该几何体的体积为8-,②错误,③正确;设M,N分别为下底面、上底面的中心,则三棱锥F-ABC的外接球的球心O在MN上.设OM=h,则,解得,从而球O的表面积为,④正确.故答案为:①③④三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.求下列各式的值:(1);(2).【答案】(1)-2;(2)18.【解析】【分析】(1)利用对数的运算性质化简求值即可.(2)由有理数指数幂与根式的关系及指数幂的运算性质化简求值.【小问1详解】原式.【小问2详解】原式.18.已知直线:的倾斜角为.(1)求a;(2)若直线与直线平行,且在y轴上的截距为-2,求直线与直线的交点坐标.【答案】(1)-1;(2)(4,2).【解析】【分析】(1)根据倾斜角和斜率的关系可得,即可得a值.(2)由直线平行有直线为,联立直线方程求交点坐标即可.【小问1详解】因为直线的斜率为,即,故.【小问2详解】依题意,直线的方程为.将代入,得,故所求交点的(4,2).19.已知函数.(1)判断f(x)的奇偶性,并说明理由;(2)用定义证明f(x)在(1,+∞)上单调递增;(3)求f(x)在[-2,-1]上的值域.【答案】(1)f(x)为奇函数,理由见解析(2)证明见解析(3)[-,-2]【解析】【分析】(1)根据奇偶性定义判断;(2)由单调性的定义证明;(3)由单调性得值域.【小问1详解】f(x)为奇函数.由于f(x)的定义域为,关于原点对称,且,所以f(x)为在上的奇函数(画图正确,由图得出正确结论,也可以得分)小问2详解】证明:设任意,,有.由,得,,即,所以函数f(x)在(1,+∞)上单调递增.【小问3详解】由(1),(2)得函数f(x)在[-2,-1]上单调递增,故f(x)的最大值为,最小值为,所以f(x)在[-2,-1]的值域为[-,-2].20.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PCD⊥底面ABCD,且BC=2,,.(1)证明:.(2)若,求四棱锥的体积.【答案】(1)证明见解析;(2)8.【解析】【分析】(1)由平行四边形的性质及勾股定理可得,再由面面垂直的性质有BC⊥面PCD,根据线面垂直的性质即可证结论.(2)取CD的中点E,连接PE,易得,由面面垂直的性质有PE⊥底面ABCD,即PE是四棱锥的高,应用棱锥的体积公式求体积即可.【小问1详解】在平行四边形ABCD中.因为,即,所以.因为面PCD⊥面ABCD,且面PCD面ABCD=CD,面PCD,所以BC⊥面PCD,又PD平面PCD,所以.【小问2详解】如图,取CD的中点E,连接PE,因为,所以,又面PCD⊥面ABCD,面PCD面ABCD=CD,面PCD,所以PE⊥底面ABCD.因为,,则,故.21.已知函数(1)求的值域;(2)讨论函数零点的个数.【答案】(1);(2)答案见解析.【解析】【分析】(1)分和,分别求出对应函数的值域,进而可求出结果;(2)作出函数的图象,数形结合即可分析出结果.【小问1详解】当时,,对称轴为,开口向上,则在上单调递减,在上单调递增,所以,即值域为;当时,,则在上单调递减,且,所以,即值域为,故的值域为.【小问2详解】由,得,则零点的个数可以看作直线与的图象的交点个数,当时,取得最小值,的图象如图所示.①当时,直线与的图象有0个交点,即零点的个数为0;②当或时,直线与的图象有1个交点,即零点的个数为1;③当或时,直线与的图象有2个交点,即零点的个数为2;④当时,直线与的图象有3个交点,即零点的个数为3.综上:①当时,零点的个数为0;②当或时,零点的个数为1;③当或时,零点的个数为2;④当时,零点的个数为3.22.已知圆O:,点,点,直线l过点P.(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积.【答案】(1)或(2)【解析】【分析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农村租赁房屋租赁合同续签补充协议
- 二零二五年度员工职务秘密及保密责任保险合同3篇
- 2025年度和公司签订的全新人力资源总监劳动合同3篇
- 二零二五年度科技孵化器实验室租赁合同3篇
- 二零二五年度子女对父母赡养与老年娱乐设施投资建设合同3篇
- 二零二五年度高端公寓租赁合同书(含健身房、游泳池)3篇
- 二零二五年度企业年会现场医疗服务及急救保障合同3篇
- 二零二五年度环保建筑材料研发与应用供货合同3篇
- 2025年度机井技术研发与升级承包合同2篇
- 2025年度消防设施远程监控与报警系统采购合同3篇
- 2023汉邦高科安防产品技术参数和检测报告
- 急诊课件:急性呼吸困难完整版
- 唐诗宋词鉴赏(第二版)PPT完整全套教学课件
- 超声诊断学-乳腺超声诊断
- 管工初赛实操
- 门诊病历书写模板全
- 2023年房屋租赁管理模板
- 液压与气压传动中职PPT完整全套教学课件
- 国开大学2023年01月11067《知识产权法》期末考试答案
- 全部编版四年级语文下生字读音、音序、偏旁及组词
- 药物的不良反应
评论
0/150
提交评论