




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Lecture
8:
Generative
Adversarial
Network2November
27,
2019
Artificial
IntelligenceGenerative
Adversarial
Networks
•
Genarative
•
Learn
a
generative
model
•
Adversarial
•
Trained
in
an
adversarial
setting
•
Networks
•
Use
Deep
Neural
NetworksArtificial
Intelligence3Generative
Models
November
27,
2019Artificial
Intelligence4Generative
Models
November
27,
2019Artificial
Intelligence5Why
Generative
Models?
•
Discriminative
models
•
Given
a
image
X,
predict
a
label
Y
•
Estimates
P(Y|X)
•
Discriminative
models
limitations:
•
Can’t
model
P(X)
•
Can’t
generate
new
images
•
Generative
models
•
Can
model
P(X)
•
Can
generate
new
images
November
27,
2019Artificial
Intelligence6Magic
of
GANs
November
27,
2019Artificial
Intelligence7Magic
of
GANs
•
Which
one
is
Computer
generated?
November
27,
2019Artificial
Intelligence8Magic
of
GANs
November
27,
2019Artificial
Intelligence9GAN’s
Architecture
November
27,
2019Artificial
Intelligence10November
27,
2019Adversarial
Training•Adversarial
Samples:••••We
can
generate
adversarial
samples
to
fool
a
discriminative
modelWe
can
use
those
adversarial
samples
to
make
models
robustWe
then
require
more
effort
to
generate
adversarial
samplesRepeat
this
and
we
get
better
discriminative
model•GANs
extend
that
idea
to
generative
models:••••Generator:
generate
fake
samples,
tries
to
fool
the
DiscriminatorDiscriminator:
tries
to
distinguish
between
real
and
fake
samplesTrain
them
against
each
otherRepeat
this
and
we
get
better
Generator
and
Discriminator
Artificial
Intelligence11Training
Discriminator
November
27,
2019
Artificial
Intelligence12Training
Generator
November
27,
2019
Artificial
Intelligence13Mathematical
formulation
November
27,
2019
Artificial
Intelligence14Mathematical
formulation
November
27,
2019
Artificial
Intelligence15Mathematical
formulation
November
27,
201916November
27,
2019
Artificial
IntelligenceMathematical
formulation
Artificial
Intelligence17Advantages
of
GANs
November
27,
2019
Artificial
Intelligence18Problems
with
GANs
November
27,
2019
Artificial
Intelligence19Problems
with
GANs
November
27,
2019Artificial
Intelligence20November
27,
2019Formulation•Deep
Learning
models
(in
general)
involve
a
single
player••••The
player
tries
to
maximize
its
reward
(minimize
its
loss).Use
SGD
(with
Backpropagation)
to
find
the
optimal
parameters.SGD
has
convergence
guarantees
(under
certain
conditions).Problem:
With
non-convexity,
we
might
converge
to
local
optima.Artificial
Intelligence21November
27,
2019Formulation•GANs
instead
involve
two
(or
more)
players••••
Discriminator
is
trying
to
maximize
its
reward.
Generator
is
trying
to
minimize
Discriminator’s
reward.SGD
was
not
designed
to
find
the
Nash
equilibrium
of
a
game.Problem:
We
might
not
converge
to
the
Nash
equilibrium
at
all.22November
27,
2019
Artificial
IntelligenceNon-Convergence
Artificial
Intelligence23Problems
with
GANs
November
27,
2019
Artificial
Intelligence24Mode-Collapse
November
27,
2019
Artificial
Intelligence25Some
Real
Examples
November
27,
2019
Artificial
Intelligence26
Some
Solutions•
Mini-Batch
GANs•
Supervision
with
labels•
Some
recent
attempts
:
•
Unrolled
GANs
•
W-GANs
November
27,
2019
Artificial
Intelligence27
Basic
(Heuristic)
Solutions•
Mini-Batch
GANs•
Supervision
with
labels
November
27,
201928November
27,
2019
Artificial
IntelligenceHow
to
reward
sample
diversity?•At
Mode
Collapse,••Generator
produces
good
samples,
but
a
very
few
of
them.Thus,
Discriminator
can’t
tag
them
as
fake.•To
address
this
problem,•Let
the
Discriminator
know
about
this
edge-case.•More
formally,••Let
the
Discriminator
look
at
the
entire
batch
instead
of
single
examplesIf
there
is
lack
of
diversity,
it
will
mark
the
examples
as
fake•Thus,•Generator
will
be
forced
to
produce
diverse
samples.Artificial
Intelligence29November
27,
2019Mini-Batch
GANs•Extract
features
that
capture
diversity
in
the
mini-batch•For
e.g.
L2
norm
of
the
difference
between
all
pairs
from
the
batch••Feed
those
features
to
the
discriminator
along
with
the
imageFeature
values
will
differ
b/w
diverse
and
non-diverse
batches•Thus,
Discriminator
will
rely
on
those
features
for
classification•This
in
turn,••Will
force
the
Generator
to
match
those
feature
values
with
the
real
dataWill
generate
diverse
batches
Artificial
Intelligence30
Basic
(Heuristic)
Solutions•
Mini-Batch
GANs•
Supervision
with
labels
November
27,
201931November
27,
2019
Artificial
IntelligenceSupervision
with
Labels32November
27,
2019
Artificial
IntelligenceAlternate
view
of
GANs33November
27,
2019
Artificial
IntelligenceAlternate
view
of
GANs
(Contd.)34November
27,
2019
Artificial
IntelligenceEnergy-Based
GANs35November
27,
2019
Artificial
IntelligenceExamples36November
27,
2019
Artificial
IntelligenceExamples37November
27,
2019
Artificial
IntelligenceExamples38November
27,
2019
Artificial
IntelligenceExamples39November
27,
2019
Artificial
IntelligenceHow
to
reward
Disentanglement?Artificial
Intelligence40November
27,
2019Recap:
Mutual
Information••Mutual
Information
captures
the
mutual
dependence
between
two
variablesMutual
information
between
two
variables
𝑿,
𝒀
is
defined
as:Artificial
Intelligence41November
27,
2019InfoGAN••We
want
to
maximize
the
mutual
information
𝐼
between
𝒄
and
𝐱
=
𝑮(𝒛,
𝒄)Incorporate
in
the
value
function
of
the
minimax
game.
Artificial
Intelligence42Conditional
GANs
November
27,
2019Artificial
Intelligence43November
27,
2019Conditional
GANs••Simple
modification
to
the
originalGAN
framework
that
conditions
themodel
on
additional
information
forbetter
multi-modal
learning.Lends
to
many
practicalapplications
of
GANs
when
wehave
explicit
supervision
available.
Artificial
Intelligence44Conditional
GANs
November
27,
2019Artificial
Intelligence45November
27,
2019Coupled
GAN•••Learning
a
joint
distribution
of
multi-domain
images.Using
GANs
to
learn
the
joint
distribution
with
samples
drawn
from
the
marginaldistributions.Direct
applications
in
domain
adaptation
and
image
translation.
Artificial
Intelligence46Coupled
GAN
November
27,
2019
Artificial
Intelligence47Coupled
GAN
November
27,
201948November
27,
2019
Artificial
IntelligenceApplications49November
27,
2019
Artificial
IntelligenceApplications
Artificial
Intelligence50Deep
Convolution
GANs
November
27,
2019
Artificial
Intelligence51Deep
Convolution
GANs
November
27,
2019
Artificial
Intelligence52Deep
Convolution
GANs
November
27,
2019
Artificial
Intelligence53DCGAN(bedroom)
November
27,
2019
Artificial
Intelligence54Image-to-ImageTran
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球及中国汽车和卡车数字仪表板行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 供应链协同决策支持系统设计-全面剖析
- 《羊草保护中的多学科整合研究需求》论文
- 2025-2030全球及中国家用啤酒酿造套件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 污水处理新型药剂研发-全面剖析
- 《燕麦对女性更年期综合征的改善作用:医学干预与营养调节》论文
- 2025-2030全球及中国信息技术咨询行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国人发和假发行业发展现状及营销模式分析研究报告
- 2025-2030全球及中国三维运动捕捉行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030光盘驱动器行业市场发展分析及发展趋势前景预测报告
- 《浅谈A企业消防安全管理中存在的问题及完善对策研究》6300字(论文)
- 秦汉考古Uooc课程答案
- 《电力建设工程施工安全管理导则》(NB∕T 10096-2018)
- 医疗器械考试题及答案
- 画饼充饥儿童故事绘本 课件
- 心理护理的沟通与技巧
- 开关、插座及其它电气设备技术规格书
- 早期阻断性矫治-乳前牙反颌的矫治(口腔正畸科)
- 手术室护士子宫切除手术护理配合常规
- DB61T 5097-2024 强夯法处理湿陷性黄土地基技术规程
- 药物临床试验统计分析计划书
评论
0/150
提交评论