山大附中必考题型-斐波那契数列习题_第1页
山大附中必考题型-斐波那契数列习题_第2页
山大附中必考题型-斐波那契数列习题_第3页
山大附中必考题型-斐波那契数列习题_第4页
山大附中必考题型-斐波那契数列习题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山大附中必考题型——斐波那契数列习题山大附中必考题型——斐波那契数列习题山大附中必考题型——斐波那契数列习题山大附中必考题型——斐波那契数列习题编制仅供参考审核批准生效日期地址:电话:传真:邮编:斐波那契数列计算题有一列数:1,1,2,3,5,8,13,21,...此数列的第2010项除以8的余数是___.从第三项起每一项是前2项的和前6个数除以8的余数分别是1,1,2,3,5,0,后面的数除以8的余数则用前两个余数相加得到即依次是5,5,2,7,1,0,1,1,2,3,5,0,……则循环周期是1,1,2,3,5,0,5,5,2,7,1,0,共12个数一个周期,因为2010÷12余数是6就相当于是第6个数的余数,即为0有一列数1,2,3,5,8......从左往右第100个数是奇数还是偶数。要算式这些数其实是有规律的,除了前两位1和2之后,就是按:奇、奇、偶这样的顺序排列的,所以有:(100-2)/3=98/3=32余2所以第100个数是奇数。有一列数1、2、3、5、8、13、21......这列数中第1001个数除以3,余数是几依次算余数,发现8个数一组,是,所以第1001个余数是1!有1列数1,2,3,5,8,13,21,34,55..从第三个数开始每个数是前两个数的和,那么在前1000个数有多少奇每3个数当中有2个奇数,1000÷3=333余1一共333组多1个多的那个是第334组的第一个,也是奇数奇数一共有:333×2+1=667个有一列数1,2,3,5,8,13,21.从第三个数起,每个数都是前面两个数的和,在前20005个数中,偶数有多少个1,2,3,5,8,13,21,34,55..规律:奇偶奇/奇偶奇/奇偶奇/.20005÷3=6668余1所以在前20005个数中,偶数有6668个有一列数1,1,2,3,5,8,13,21,34,从第三个数开始每一个数都是它前面两个数的和,求这一列数的第2006个除以4后所得的余数如果硬算,那是算不出来的,所以,我们要找规律.1÷4余1,1÷4余1,2÷4余2,3÷4余3,5÷4余1,8÷4余0,13÷4余1,21÷4余1,34÷4余2,55÷4余3,89÷4余1,144÷4余0余数是1,1,2,3,1,0这样循环的,把2006÷6=334余2,那么,1,1,2,3,1,0中的第2个是1,答第2006个除以4后所得的余数是1有一列数:1,1,2,3,5,8,13,21,34......从第3个数开始,每一个数都是它前面2个数的和。那么在前2008个数中,有几个奇数1339个,顺序是:奇,奇,偶。最后一个也是奇数。列式是:2008÷3=669……1669×2+1=1339.有一列数:1、1、2、3、5、8、13……,即第一、第二个数都是1,从第三个数起,每个数都是前面两个数的和,求第2003个数除以3的余数。找规律,每个数除以3的余数分别是1、1、2、0、2、2、1、0、%1、1、2,可以看出循环节长度是8,,第2003个就是第3个,余数是21

2

3

5

8

13

21

34

55

+ 89 答案是231.34 55 89 144 233 377 610 987 1597+ 2584答案是6710斐波那契数列前a1+a2+a3+a4+a5.....+a10=11a7下图是一个树形图的生长过程,依据图中所示的生长规律,第16行的实心圆点的个数是

610(新兔子数=上月成年兔成年兔数=上月成年兔+上月新生兔)空心代表幼兔,实心代表成年兔。台阶问题:一个楼梯共有10级台阶,规定每步可以迈一级台阶或二级台阶,从地面到最上面一级台阶,一共可以有多少种不同的走法1级台阶,有1种;2级台阶,有1,1;2。2种3级台阶,有1,1,1;1,2;2,1。3种4级台阶,有1,1,1,1;1,1,2;2,1,1;1,2,1;2,2。5种5级台阶,若第一次迈1级台阶,还剩4级,有几种若第一次迈2级台阶,还剩3级,有几种一个楼梯共有10级台阶,规定每步可以迈一级台阶或二级台阶,最多可以迈三级台阶。从地面到最上面一级台阶,一共可以有多少种不同的走法(89)一只青蛙从宽5米的水田的一边要跳往另一边,它每次只能跳米,或1米,这只青蛙跳过水田共有多少种不同的方法(89种)转化为台阶问题(1,2,3,5,8,13,21,34,55,89,144)有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法(927种)转化为台阶问题(1,2,4,7,13,24,44,81,149,274,504,927)如下图,小方和小张进行跳格子游戏,小方从A跳到B,每次可跳1步或2步;小张从C跳到D,每次可跳1步、2步或3步。试比较:谁跳到目标处的不同跳法多多几种(小方144,小张149)A

C

B

D在斐波那契数列的前2010项中,有多少个偶数末尾数循环问题:在斐波那契数列的前2010项中,有多少项的末位数等于2(斐波那契数列的个位数:一个60步的循环:11235,83145,94370,77415,,99875,27965,16730,33695,49325,72910…,每个循环中有4个个位是2的数,分别是3个,第36个,第54个,第57个)需要记忆:斐波那契数列的个位数为60步的循环,最后两位数是一个300步的循环,最后三位数是一个1500步的循环,最后四位数是一个15000步的循环,最后五位数是一个150000步的循环.蜜蜂进蜂房问题:一次蜜蜂从蜂房A出发,想爬到、、……、n号蜂房,只允许它自左向右(不许反方向倒走)。则它爬到各号蜂房的路线多少斐氏推算:蜂从A爬到1号蜂房有一条路;爬到2号蜂房又2条路(A→2和A→1→2)爬到n号蜂房的路线可分成两类:1.不经过n-1号蜂房,而从n-2号蜂房直接爬进n号蜂房;2.经n-1蜂房而爬进n号蜂房。仿前例推算知:从A到n-2号蜂房路线有fn-1条,而从A到n-1号蜂房路线有fn-1,这样蜂从A爬到n号蜂房的路线条数有:fn=fn-2+fn-1,(n≧2)这恰恰与生小兔问题的结论一致,1,2,3,5,8,13,21,34,55,假定有一排蜂房,形状如图,一只蜜峰在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上、右下)爬行,从一间蜂房爬到右边相邻的蜂房中去.例如,蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号共有2种不同的爬法,若蜜蜂从最初位置爬到4号蜂房共有n种不同爬法,则n等于______.斐波那契数列与蜜蜂的家谱问题:蜜蜂的“家谱”:蜜蜂的繁殖规律十分有趣。雄蜂只有母亲,没有父亲,因为蜂后所产的卵,受精的孵化为雌蜂(即工蜂或蜂后),未受精的孵化为雄蜂。人们在追溯雄蜂的家谱时,发现1只雄蜂的第n代子孙的数目刚好就是Fibonacci数列的第n项fn。♂0|♀╱╲♀♂1╱╲╲♀♂♀1╱╲|╱╲♀♂♀♂♀2╱╲|╱╲╲╱╲♀♂♀♂♀♀♂♀3╱╱╱╱╱♂♂♂♂♂5斐波那契数列与三角形问题:现有长为144cm的铁丝,要截成n小段(n>2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为10。分析:由于形成三角形的充要条件是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边。截成的铁丝最小为1,因此可以放2个1,第三条线段就是2(为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和),依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10。有8个自然数(可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论