2023年人教版初中数学第九章《圆》专题训练测试卷(一)打印版含答案_第1页
2023年人教版初中数学第九章《圆》专题训练测试卷(一)打印版含答案_第2页
2023年人教版初中数学第九章《圆》专题训练测试卷(一)打印版含答案_第3页
2023年人教版初中数学第九章《圆》专题训练测试卷(一)打印版含答案_第4页
2023年人教版初中数学第九章《圆》专题训练测试卷(一)打印版含答案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版初中数学第九章《圆》专题训练测试卷(一)时间:45分钟满分:80分一、选择题(每题4分,共32分)1.如图,AB是⊙O的直径,点C,D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为()A.25° B.35° C.45° D.65°(第1题)(第3题)(第5题)2.已知圆的半径是2eq\r(3),则该圆的内接正六边形的面积是()A.3eq\r(3) B.9eq\r(3) C.18eq\r(3) D.36eq\r(3)3.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=4,则eq\o(BC,\s\up8(︵))的长为()A.eq\f(8π,9) B.eq\f(4π,3)C.eq\f(16π,9) D.2π4.已知⊙O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与⊙O的位置关系是()A.相交 B.相切C.相离 D.无法确定5.如图,点A,B,C,D,E在⊙O上,eq\o(AB,\s\up8(︵))所对的圆心角为50°,则∠C+∠E等于()A.155° B.150° C.160° D.162°6.把球放在长方体纸盒内,球的一部分露在盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cmC.3cm D.4cm(第6题)(第7题)7.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与点A,B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3 B.4C.5 D.68.如图,AB,CD是⊙O的两条弦,且AB=CD,OM⊥AB,ON⊥CD,垂足分别为点M,N,BA,DC的延长线交于点P,连接OP.下列结论正确的个数是()(第8题)①eq\o(AB,\s\up8(︵))=eq\o(CD,\s\up8(︵));②OM=ON;③PA=PC;④∠BPO=∠DPO.A.1个 B.2个C.3个 D.4个二、填空题(每题4分,共16分)9.如图,⊙O的直径AB与弦CD相交于点E,若AE=5,EB=1,∠AEC=30°,则CD的长为________.(第9题)(第10题)10.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD长为半径画弧交AB于点E,连接CE,则阴影部分的面积是__________.(结果保留π)11.如图,边长为a的正三角形ABC内有一边长为b的内接正三角形DEF,则△AEF的内切圆半径为______________________________.(第11题)(第12题)12.如图,在平面直角坐标系中,⊙M经过原点,且与x轴交于点A(4,0),与y轴交于点B,点C在第四象限的⊙M上,且∠AOC=60°,OC=3,则点B的坐标是________.三、解答题(共32分)13.(10分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=eq\r(2),AD=1,求CD的长度.(第13题)14.(10分)如图,AB是半圆O的直径,弦CD∥AB,过点D作半圆O的切线DE,与AB的延长线相交于点E,连接OC,AD,∠A=22.5°.(1)求证:四边形COED是平行四边形;(2)当CD=2eq\r(2)时,求围成阴影部分图形的周长.(第14题)15.(12分)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(第15题)(1)求证:FG是⊙O的切线;(2)若BG=1,BF=3,求CF的长.

答案一、1.A2.C3.C4.C5.A6.B7.A8.D二、9.4eq\r(2)10.3-eq\f(1,3)π11.eq\f(\r(3),6)(a-b)12.(0,-eq\f(2\r(3),3))三、13.解:(1)△ABC是等腰直角三角形.证明:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵∠ADB=∠CDB,∴eq\o(AB,\s\up8(︵))=eq\o(BC,\s\up8(︵)),∴AB=BC,∴△ABC是等腰直角三角形.(2)由(1)知△ABC是等腰直角三角形,∴在Rt△ABC中,AB=BC=eq\r(2),∴AC=eq\r(AB2+BC2)=2.∵∠ADC=90°,AD=1,∴在Rt△ADC中,CD=eq\r(AC2-AD2)=eq\r(3).14.(1)证明:如图,连接OD.∵DE是半圆O的切线,∴OD⊥DE.∵∠A=22.5°,∴∠DOE=2∠A=45°,∴OE=eq\f(OD,cos45°)=eq\r(2)OD.∵CD∥AB,∴∠ODC=∠DOE=45°.∵OC=OD,∴∠OCD=∠ODC=45°,∴∠COD=90°,∴CD=eq\r(2)OD,∴CD=OE.∴四边形COED是平行四边形.(第14题)(2)解:由(1)可知OE=CD=eq\r(2)OD.∵CD=2eq\r(2),∴OD=OB=eq\f(\r(2),2)CD=2,OE=CD=2eq\r(2),∴BE=OE-OB=2eq\r(2)-2.由(1)可知∠DOE=45°.∴eq\o(BD,\s\up8(︵))的长为eq\f(45π×2,180)=eq\f(π,2),易知△ODE为等腰直角三角形,∴DE=OD=2,∴围成阴影部分图形的周长为2+2eq\r(2)-2+eq\f(π,2)=2eq\r(2)+eq\f(π,2).15.(1)证明:如图,连接OF.∵AB=AC,∴∠B=∠C.∵OF=OC,∴∠C=∠OFC,∴∠OFC=∠B,∴OF∥AB.∵FG⊥AB,∴FG⊥OF.又∵OF是⊙O的半径,∴GF是⊙O的切线.(2)解:如图,连接OE,过点O作OH⊥CF于点H.∵BG=1,BF=3,FG⊥AB,∴FG=eq\r(BF2-BG2)=eq\r(9-1)=2eq\r(2).∵⊙O与AB相切于点E,(第15题)∴OE⊥AB.又∵AB⊥GF,OF⊥GF,∴四边形GFOE是矩形,∴OE=FG=2eq\r(2),∴OF=OC=OE=2e

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论