版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市铁西区雨田实验中学2019-2020学年八年级上学期期中数学试卷-(有解析)辽宁省沈阳市铁西区雨田实验中学2019-2020学年八年级上学期期中数学试卷-(有解析)辽宁省沈阳市铁西区雨田实验中学2019-2020学年八年级上学期期中数学试卷-(有解析)辽宁省沈阳市铁西区雨田实验中学2019-2020学年八年级上学期期中数学试卷-(有解析)编制仅供参考审核批准生效日期地址:电话:传真:邮编:辽宁省沈阳市铁西区雨田实验中学2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共10小题,共分)下列数据中,无理数是( )A.π B.-3 C.0 D.22若b<0,则一次函数y=-x+b的图象大致是( )A. B. C. D.181的算术平方根是( )A.19 B.-19 C.±我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为( )A.49 B.25 C.12 D.1估计14的值在哪两个数之间( )A.1与2 B.2
与3 C.3与4 D.4与5把等腰直角三角板OAB按如图方式放置在平面直角坐标系中,点A的坐标为(2,2),则点BA.(0,2)
B.(0,22)
C.(22一次函数y=x-5的图象经过点( )A.(-5,0) B.(0,0) C.(0,-5) D.(0,5)下列图形具有稳定性的是( )A.三角形 B.四边形 C.五边形 D.六边形若y=kx-4的函数值y随x的增大而增大,则k的值可能是下列的( )A.-4 B.-12 C.0 已知正方形ABCD的面积为8,则该正方形的对角线AC的长度为( )A.2 B.22 C.4 D.二、填空题(本大题共6小题,共分)函数y=x的图象在第______象限.化简|2-π|=______.已知点A(-4,5),B(2,-3),则线段AB的长是______.如图,已知圆柱的底面周长为10cm,高为12cm,一只蚂蚁在圆柱表面爬行觅食先从B点爬到C点,吃到食物后又从另一面爬回B点,则蚂蚁爬行的最短路线为______cm.
如图,将长方形ABCD沿着对角线BD折叠,点C落在C'处,BC'交AD于点E.若AB=4cm,AD=8cm,则△BDE的面积等于______.如图,在平面直角坐标系中,点M是直线y=-x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为______________.
三、计算题(本大题共1小题,共分)计算:(-2)2-27+(2-1)四、解答题(本大题共8小题,共分)已知:在△ABC中,AB=15,AC=20,边BC上的高AD=12.求BC的长.
如图,在平面直角坐标系中,直线y=kx+b经过点A(-30,0)和点B(0,15),直线y=x+5与直线y=kx+b相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.
(2)求△PBC的面积.
如图,在平面直角坐标系中,△ABC的顶点的坐标分别为A(-2,3),B(-4,1),C(-l,2):
(1)画出△ABC关于y轴的对称图形△A1B1C1;
(2)直接写出点A1关于x轴的对称点的坐标______;
如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,AD=DC=2.5,BC=4.(1)求∠CBE的度数;(2)求△CDP与△BEP的周长和.
探究函数y=12|x-1|-2的图像和性质,小明根据学习函数的经验,对函数y=12|x-1|-2的图像进行了研究,下面是小明的探究过程,请补充完成:
(1)化简函数解析式,当x<1时,y=_______,当x≥1时,y=_________;
(2)根据(1)的结果,补全函数y=12|x-1|-2的图像;
(3)19.(1)计算:16+(2)求x的值:(x+3)2=16
一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系.根据图象提供的信息,解答下列问题:
(1)求线段AB所在直线的函数关系式和甲、乙两地的距离;
(2)求两车的速度;
(3)求点C的坐标,并写出点C的实际意义.
如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A'CD,连接A'B.
(1)求证:CD//A'B;
(2)若AB=4,求A'B2的值.
--------答案与解析--------1.答案:A解析:分别根据无理数、有理数的定义即可判定选择项.
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.
解:-3,0,227是有理数,
π是无理数,
故选:A.
2.答案:解析:本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数图象与系数的关系找出函数图象经过的象限是关键.根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论.
解:∵k=-1<0,b<0,
∴一次函数y=x+b的图象经过第二、三、四象限.
故选D.
3.答案:A解析:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.
根据算术平方根的定义解答即可.
解:∵(19)2=181,
∴181的算术平方根是解析:本题主要考查了勾股定理,还要注意图形的面积和a,b之间的关系.根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值.
解:如图,
∵大正方形的面积是25,
∴c2=25,
∴a2+b2=c2=25,
解析:解:∵9<14<16,
∴3<14<4.
故选:C.
利用夹逼法求解即可.
本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.
6.解析:此题考查了等腰直角三角形性质,点的坐标的确定,过A作AD⊥y轴于D,则D点坐标为(0,2),再根据等腰三角形性质得到B(0,22).
解:过A作AD⊥y轴于D,点A的坐标为(2,2)
∴D点坐标为(0,2)
解析:本题主要考查了一次函数,关键是熟练掌握一次函数图象上点的特征.代入选项中点的坐标,满足左右两边相等的即可得出结论.
解:当x=-5时,y=-10,则经过点(-5,-10);
当x=0时,y=-5,则经过点(0,-5);
则(-5,0),(0,0),(0,5)都不在函数图象上,(0,-5)符合题意.
故选C.
8.答案:A解析:解:具有稳定性的图形是三角形.
故选:A.
根据三角形具有稳定性解答.
本题考查了三角形具有稳定性,是基础题,需熟记.
9.答案:D解析:本题考查了一次函数的性质有关知识,
根据一次函数的性质,若y随x的增大而增大,则比例系数大于0.
解:∵y=kx-4的函数值y随x的增大而增大,
∴k>0,
而四个选项中,只有D符合题意,
故选D.
10.答案:C解析:本题考查了正方形的性质,勾股定理,熟练掌握正方形的性质是解题的关键,由正方形ABCD的面积为8,得其边长为8=22,由勾股定理即可求解.
解:∵正方形ABCD的面积为8,
∴正方形ABCD的边长为8=22,
∵正方形对角线与其两条边组成直角三角形,
由勾股定理得:AC=222+222=4,解析:解:因为k=1>0,
所以根据正比例函数图象的性质,
得该直线过一、三象限,
故答案为:一、三
根据正比例函数图象的性质填空.
此题考查正比例函数的性质,了解正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.
12.答案:π-2解析:解:|2-π|=π-2.
故答案为:π-2.
根据负数的绝对值等于它的相反数解答.
本题考查了实数的性质,是基础题,主要利用了绝对值的性质.
13.答案:10解析:解:线段AB的长=(-4-2)2+(5+3)2=10.
故答案为10.
本题考查了两点间距离的求法:设有两点A(x1解析:解:把圆柱侧面展开,展开图如右图所示,点B、C的最短距离为线段BC的长.
在Rt△ABC中,∠BAC=90°,AC=12cm,AB为底面半圆弧长,AB=5cm,
所以BC=AB2+AC2=13cm,
∴从B点爬到C点,然后再沿另一面爬回B点,则小虫爬行的最短路程为2BC=26cm,
故答案为:26.
要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.
本题考查了平面展开解析:解:设AE=x,则BE=DE=8-x,
在直角△ABE中,AB2+AE2=BE2,
即42+x2=(8-x)2,
解得:x=3,
则AE=3cm,DE=8-3=5cm,
则S△BDE=12AB解析:本题主要考查了一次函数图象上点的坐标特征,根据直线y=-x上的点的坐标特点得出M点的坐标,根据垂直于x轴直线上的点的坐标特征及直线y=x上的点的坐标特征得出N的坐标,从而求出MN的长,根据MN≤8,列不等式求解即可.
解:∵点M在直线y=-x上,
∴M(m,-m),
∵MN⊥x轴,且点N在直线y=x上,
∴N(m,m),
∴MN=|-m-m|=|2m|,
∵MN≤8,
∴|2m|≤8,
∴-4≤m≤4.
故答案为-4≤m≤4.
17.答案:解:原式=4-33解析:【分析】本题主要考查的是实数的运算,算术平方根,零指数幂,有理数的乘方的有关知识,先将给出的式子进行变形,然后再计算即可.
18.答案:解:(1)如图1,△ABC中,AB=15,AC=20,BC边上高AD=12,
在Rt△ABD中AB=15,AD=12,
由勾股定理得BD=152-122=9,
在Rt△ADC中AC=20,AD=12,
由勾股定理得DC=202-122=16,
BC的长为BD+DC=9+16=25.
如图2,△ABC中,AB=15,AC=20,BC边上高AD=12,
在Rt△ABD中AB=15,AD=12,
由勾股定理得BD=152-122=9,
在Rt△ACD中解析:本题主要考查了勾股定理,解决问题的关键是在直角三角形中用勾股定理求得线段的长.当已知条件中没有明确角的大小时,要注意讨论.已知三角形两边的长和第三边的高,未明确这个三角形为钝角还是锐角三角形,所以需分情况讨论,即∠ABC是钝角还是锐角,然后利用勾股定理求解.
19.答案:解:(1)将点A(-30,0)、B(0,15)代入y=kx+b,得:
-30k+b=0b=15,解得:k=∴直线的解析式为y=1(2)联立两直线解析式成方程组,y=12x+15∴点P的坐标为(20,25).当x=0时,y=x+5=5,∴点C的坐标为(0,5),∴BC=15-5=10,∴S解析:本题考查了两条直线相交或平行问题、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及三角形的面积.(1)根据点A、B的坐标,利用待定系数法求出直线AB的解析式即可;(2)联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,再利用三角形的面积公式,即可求出△PBC的面积.
20.答案:(1)如图所示:△A1B1C1即为所求作的图形;
解析:(1)直接利用关于y轴对称点的性质得出对应点位置即可得出答案;
(2)直接利用关于x轴对称点的性质得出答案;
(3)利用△ABC所在矩形面积减去周围三角形面积,进而得出答案.
此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.
解:(1)见答案;
(2)点A1关于x轴的对称点的坐标(2,-3),
故答案为:(2,-3);
(3)△ABC的面积=2×3-12×1×1-12×2×2-12×1×3=2,
故答案为:2.
21.答案:解:(1)∵∠ABE=162°,∠DBC=30°,
∴∠ABD+∠CBE=132°,
∵△ABC≌△DBE,
∴∠ABC=∠DBE,
∴∠ABD=∠CBE=132°÷2=66°,
即∠CBE的度数为66°;
(2)∵△ABC≌△DBE,
∴DE=AC=AD+DC=5解析:本题考查的是全等三角形的性质、角的和与差的应用,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.
(1)根据全等三角形的性质得到∠ABC=∠DBE,计算即可;
(2)根据全等三角形的性质求出BE、DE,根据三角形的周长公式计算即可.
22.答案:解:(1)-12x-32;12x-52
(2)当x<1时,y=-12x-32过点(0,-32)解析:本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
(1)根据题目中的函数解析式,可以分别写出x≥1和x<1时的函数解析式;
(2)根据(1)中的结果,可以在坐标系中画出函数y=12|x-1|-2的图象;
(3)根据(1)中的函数图象,可以写出函数y=12|x-1|-2的一条性质,本题答案不唯一,只要符合题意即可;
解:(1)当x<1时,y=12|x-1|-2=-12(x-1)-2=-12x-32,
当x≥1时,y=12|x-1|-2=1解析:(1)利用算术平方根以及立方根的性质化简得出答案;
(2)利用平方根的定义化简得出答案.【详解】解:(1)=4+2=6
;(2)解得:x+3=±4即:x=1,x=-7.此题主要考查了实数运算,正确化简各数是解题关键.
24.答案:解:(1)设直线AB的函数关系式为y=kx+b,
由题意知直线AB过(2,150)和(3,0),
150=2k+b0=3k+b,解得k=-150b=450.
∴直线AB的函数关系式为y=-150x+450;
当x=0时,y=450,
∴甲乙两地的距离为450千米.
(2)设轿车和货车的速度分别为V1千米/小时,V2千米/小时.
根据题意得3V1+3V2=450,3V1-3V2=90.解得:V1=90,V2=60,
故轿车和货车速度分别为90千米/解析:(1)设线段AB的解析式为y=kx+b,将(2,150)和(3,0)代入,可求线段AB的解析式,根据线段AB的解析式求A点坐标,得出甲乙两地之间的距离;
(2)设两车相遇时,设轿车和货车的速度分别为V1千米/小时,V2千米/小时,根据相遇时:轿车路程+货车路程=甲乙两地距离,轿车路程-货车路程=90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年企业用车借用协议范本3篇
- 2025年度文化旅游融合项目投资借款协议
- 买卖合同第三方保证担保合同(2024版)
- 二零二五年度旅行社旅游培训合作合同4篇
- 2025年度女方婚内出轨离婚财产分割及赡养费协议
- 2025年度个人商铺租赁合同能源消耗监测与管理合同4篇
- 2025年度个人与企业间特殊用途车辆租赁合同3篇
- 二零二五年度农民工劳动保护补贴发放合同标准
- 2024苗木运输合同范本全面规范运输过程中的风险防控3篇
- 二零二五年度加油站LED广告屏安装装修合同3篇
- DB45T 1950-2019 对叶百部生产技术规程
- 资源枯竭型城市的转型发展 课件 2024-2025学年高二上学期地理人教版选择性必修2
- 2025届河北省衡水市衡水中学高考仿真模拟英语试卷含解析
- 新修订《保密法》知识考试题及答案
- 电工基础知识培训课程
- 住宅楼安全性检测鉴定方案
- 广东省潮州市潮安区2023-2024学年五年级上学期期末考试数学试题
- 市政道路及设施零星养护服务技术方案(技术标)
- 选择性必修一 期末综合测试(二)(解析版)2021-2022学年人教版(2019)高二数学选修一
- 《论语》学而篇-第一课件
- 《写美食有方法》课件
评论
0/150
提交评论