2023届福建省龙岩市连城县数学九上期末调研试题含解析_第1页
2023届福建省龙岩市连城县数学九上期末调研试题含解析_第2页
2023届福建省龙岩市连城县数学九上期末调研试题含解析_第3页
2023届福建省龙岩市连城县数学九上期末调研试题含解析_第4页
2023届福建省龙岩市连城县数学九上期末调研试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,中,且,若点在反比例函数的图象上,点在反比例函数的图象上,则的值为()A. B. C. D.2.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为()A. B. C. D.3.如图,直线l1∥l2∥l3,两条直线AC和DF与l1,l2,l3分别相交于点A、B、C和点D、E、F,则下列比例式不正确的是()A. B. C. D.4.一个三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长为()A. B. C.10或11 D.不能确定5.在下面四个选项的图形中,不能由如图图形经过旋转或平移得到的是()A. B. C. D.6.在平面直角坐标系中,将抛物线向上平移1个单位后所得抛物线的解析式为()A. B. C. D.7.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.8.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为()A.5cm B.10cm C.20cm D.30cm9.抛物线的顶点为,与轴交于点,则该抛物线的解析式为()A. B.C. D.10.用配方法解方程,下列配方正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗杆高为______.12.如图,点G是△ABC的重心,过点G作GE//BC,交AC于点E,连结GC.若△ABC的面积为1,则△GEC的面积为____________.13.计算:______.14.不等式>4﹣x的解集为_____.15.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.16.如图,有一张直径为1.2米的圆桌,其高度为0.8米,同时有一盏灯距地面2米,圆桌在水平地面上的影子是,∥,和是光线,建立如图所示的平面直角坐标系,其中点的坐标是.那么点的坐标是_________.17.在平面直角坐标系中,解析式为的直线、解析式为的直线如图所示,直线交轴于点,以为边作第一个等边三角形,过点作轴的平行线交直线于点,以为边作第二个等边三角形,……顺次这样做下去,第2020个等边三角形的边长为______.18.双曲线、在第一象限的图像如图,,过上的任意一点,作轴的平行线交于,交轴于,若,则的解析式是_____________.三、解答题(共66分)19.(10分)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为.(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数.(3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.(6分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;21.(6分)为了节省材料,某水产养殖户利用本库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的①、②、③三块矩形区域网箱,而且这三块矩形区域的面积相等,设BE的长度为xm,矩形区域ABCD的面积为ym1.(1)则AE=m,BC=m;(用含字母x的代数式表示)(1)求矩形区域ABCD的面积y的最大值.22.(8分)解一元二次方程:x2﹣2x﹣3=1.23.(8分)如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点,且,顶点为.(1)求二次函数的解析式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;(3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.24.(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.25.(10分)元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?26.(10分)三台县教育和体育局为帮助万福村李大爷“精准脱贫”,在网上销售李大爷自己手工做的竹帘,其成本为每张40元,当售价为每张80元时,每月可销售100张.为了吸引更多顾客,采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5张.设每张竹帘的售价为元(为正整数),每月的销售量为张.(1)直接写出与的函数关系式;(2)设该网店每月获得的利润为元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)李大爷深感扶贫政策给自己带来的好处,为了回报社会,他决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,求销售单价应该定在什么范围内?

参考答案一、选择题(每小题3分,共30分)1、D【分析】要求函数的解析式只要求出点B的坐标就可以,设点A的坐标是,过点A、B作AC⊥y轴、BD⊥y轴,分别于C、D.根据条件得到△ACO∽△ODB,利用相似三角形对应边成比例即可求得点B的坐标,问题即可得解.【详解】如图,过点A,B作AC⊥y轴,BD⊥y轴,垂足分别为C,D,设点A的坐标是,

则,

∵点A在函数的图象上,∴,∵∠AOB=90°,

∴∠AOC+∠BOD=∠AOC+∠CAO=90°,

∴∠CAO=∠BOD,

∴,∴∴,

∴,

∵点B在反比例函数的图象上,

∴.故选:D【点睛】本题是反比例函数与几何的综合,考查了求函数的解析式的问题以及相似三角形的判定和性质,能够把求反比例函数的解析式转化为求点的坐标的问题是解题的关键.2、B【分析】连结,,设半径为r,根据垂径定理得,在中,由勾股定理建立方程,解之即可求得答案.【详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【点睛】本题考查勾股定理,关键是利用垂径定理解答.3、D【解析】试题分析:根据平行线分线段成比例定理,即可进行判断.解:∵l1∥l2∥l3,∴,,,.∴选项A、B、C正确,D错误.故选D.点睛:本题是一道关于平行线分线段成比例的题目,掌握平行线分线段成比例的相关知识是解答本题的关键4、B【分析】直接利用因式分解法解方程,进而利用三角形三边关系得出答案.【详解】∵,

∴,

解得:,

∵一个三角形的两边长为3和5,

∴第三边长的取值范围是:,即,

则第三边长为:3,

∴这个三角形的周长为:.

故选:B.【点睛】本题主要考查了因式分解法解方程以及三角形三边关系,正确掌握三角形三边关系是解题关键.5、C【分析】由题图图形,旋转或平移,分别判断、解答即可.【详解】A、由图形顺时针旋转90°,可得出;故本选项不符合题意;

B、由图形逆时针旋转90°,可得出;故本选项不符合题意;

C、不能由如图图形经过旋转或平移得到;故本选项符合题意;

D、由图形顺时针旋转180°,而得出;故本选项不符合题意;

故选:C.【点睛】本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.6、B【分析】根据抛物线的平移规律:括号里左加右减,括号外上加下减,即可得出结论.【详解】解:将抛物线向上平移1个单位后所得抛物线的解析式为故选B.【点睛】此题考查的是求抛物线平移后的解析式,掌握抛物线的平移规律:括号里左加右减,括号外上加下减,是解决此题的关键.7、A【解析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.8、B【解析】试题解析:设此圆锥的底面半径为r,2πr=,r=10cm故选B.考点:弧长的计算.9、A【分析】设出抛物线顶点式,然后将点代入求解即可.【详解】解:设抛物线解析式为,将点代入得:,解得:a=1,故该抛物线的解析式为:,故选:A.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.10、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:等式两边同时加上一次项系数的绝对值一半的平方22,,∴;故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.二、填空题(每小题3分,共24分)11、20m【解析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.12、【分析】如图,延长AG交BC于D,利用相似三角形的面积比等于相似比的平方解决问题即可.【详解】解:连接AG并延长交BC于点D,∴D为BC中点∴又∵∴∵G为重心∴∴∴,又∵∴.【点睛】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13、【分析】根据特殊角三角函数值和二次根式化简整理,合并同类二次根式即可求解.【详解】解:.故答案为:【点睛】本题考查了特殊角的三角函数值和二次根式的计算,熟知特殊角的三角函数值是解题关键.14、x>1.【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.15、2【分析】连接BF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据等边对等角的性质求出∠ABF=∠A,然后根据三角形的内角和定理求出∠CBF,再根据三角函数的定义即可求出CF.【详解】如图,连接BF,

∵EF是AB的垂直平分线,

∴AF=BF,

∴,,在△BCF中,∴,∴.故答案为:.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.16、【分析】先证明△ABC∽△ADE,再根据相似三角形的性质:相似三角形的对应高的比等于相似比求解即可.【详解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案为:(4,0).【点睛】本题考查了中心投影,相似三角形的判定和性质,准确识图,熟练掌握相似三角形的对应高的比等于相似比是解题的关键.17、【分析】由题意利用一次函数的性质以及等边三角形性质结合相似三角形的性质进行综合分析求解.【详解】解:将代入分别两个解析式可以求出AO=1,∵为边作第一个等边三角形,∴BO=1,过B作x轴的垂线交x轴于点D,由可得,即,∴,,即B的横轴坐标为,∵与轴平行,∴将代入分别两个解析式可以求出,∵,∴,即相邻两个三角形的相似比为2,∴第2020个等边三角形的边长为.故答案为:.【点睛】本题考查一次函数图形的性质以及等边三角形性质和相似三角形的性质的综合问题,熟练掌握相关知识并运用数形结合思维分析是解题的关键.18、【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【详解】解:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×4=2,∵S△AOB=1,∴△CBO面积为3,∴k=xy=6,∴y2的解析式是:y2=.故答案为y2=.三、解答题(共66分)19、(1)40;(2)见解析,18°;(3)获得三等奖的有210人.【分析】(1)根据B的人数和所占的百分比可以求得本次抽样调查学生人数;(2)根据统计图中的数据和(1)中的结果可以将统计图中所缺的数据补充完整并计算出扇形统计图中A所对应扇形圆心角的度数;(3)根据统计图中的数据可以计算出获得三等奖的人数.【详解】解:(1)本次抽样调查学生的人数为:8÷20%=40,故答案为:40;(2)A所占的百分比为:×100%=5%,D所占的百分比为:×100%=50%,C所占的百分比为:1﹣5%﹣20%﹣50%=25%,获得三等奖的人数为:40×25%=10,补全的统计图如图所示,扇形统计图中A所对应扇形圆心角的度数是360°×5%=18°;(3)840×25%=210(人),答:获得三等奖的有210人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20、(1)y=x2﹣x﹣6;(2)点D的坐标为(,﹣5);(3)△BCE的面积有最大值,点E坐标为(,﹣).【分析】(1)先求出点A,C的坐标,再将其代入y=x2+bx+c即可;(2)先确定BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,求出直线BC的解析式,再求出其与对称轴的交点即可;(3)如图2,连接OE,设点E(a,a2﹣a﹣6),由式子S△BCE=S△OCE+S△OBE﹣S△OBC即可求出△BCE的面积S与a的函数关系式,由二次函数的图象及性质可求出△BCE的面积最大值,并可写出此时点E坐标.【详解】解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),将A(﹣2,0),C(0,﹣6)代入y=x2+bx+c,得,解得,b=﹣1,c=﹣6,∴抛物线的解析式为:y=x2﹣x﹣6;(2)在y=x2﹣x﹣6中,对称轴为直线x=,∵点A与点B关于对称轴x=对称,∴如图1,可设BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,在y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=3,∴点B的坐标为(3,0),设直线BC的解析式为y=kx﹣6,将点B(3,0)代入,得,k=2,∴直线BC的解析式为y=2x﹣6,当x=时,y=﹣5,∴点D的坐标为(,﹣5);(3)如图2,连接OE,设点E(a,a2﹣a﹣6),S△BCE=S△OCE+S△OBE﹣S△OBC=×6a+×3(﹣a2+a+6)﹣×3×6=﹣a2+a=﹣(a﹣)2+,根据二次函数的图象及性质可知,当a=时,△BCE的面积有最大值,当a=时,∴此时点E坐标为(,﹣).【点睛】本题考查的是二次函数的综合,难度适中,第三问解题关键是找出面积与a的关系式,再利用二次函数的图像与性质求最值.21、(1)1x,(80﹣4x);(1)1100m1.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的1倍,可得出AE=1BE,设BE=x,则有AE=1x,BC=80﹣4x;(1)利用二次函数的性质求出y的最大值,以及此时x的值即可.【详解】(1)设BE的长度为xm,则AE=1xm,BC=(80﹣4x)m,故答案为:1x,(80﹣4x);(1)根据题意得:y=3x(80﹣4x)=﹣11x1+140x=﹣11(x﹣10)1+1100,因为﹣11,所以当x=10时,y有最大值为1100.答:矩形区域ABCD的面积的最大值为1100m1.【点睛】本题考查二次函数的性质和应用,解题的关键是掌握二次函数的性质和应用.22、x1=﹣1,x2=2.【分析】先把方程左边分解,原方程转化为x+1=1或x﹣2=1,然后解一次方程即可.【详解】解:∵x2﹣2x﹣2=1,∴(x+1)(x﹣2)=1,∴x+1=1或x﹣2=1,∴x1=﹣1,x2=2.【点睛】本题考查了一元二次方程的解法:配方法、公式法和因式分解法.三种方法均可解出方程的根,这里选用的是因式分解法.23、(1);(2);(3)存在,,.【解析】(1)可根据OB、OC的长得出B、C两点的坐标,然后用待定系数法即可求出抛物线的解析式.

(2)可将四边形ACPQ分成直角三角形AOC和直角梯形CQPC两部分来求解.先根据抛物线的解析式求出A点的坐标,即可得出三角形AOC直角边OA的长,据此可根据上面得出的四边形的面积计算方法求出S与m的函数关系式.

(3)先根据抛物线的解析式求出M的坐标,进而可得出直线BM的解析式,据此可设出N点的坐标,然后用坐标系中两点间的距离公式分别表示出CM、MN、CN的长,然后分三种情况进行讨论:①CM=MN;②CM=CN;③MN=CN.根据上述三种情况即可得出符合条件的N点的坐标.【详解】解:(1)∵,∴,.∴,解得,∴二次函数的解析式为;(2),设直线的解析式为,则有解得∴直线的解析式为∵轴,,∴点的坐标为;(3)线段上存在点,使为等腰三角形.设点坐标为则:,,①当时,解得,(舍去)此时②当时,,解得,(舍去),此时③当时,解得,此时.【点睛】本题考查了二次函数解析式的确定、图形的面积求法、函数图象交点、等腰三角形的判定等知识及综合应用知识、解决问题的能力.考查学生分类讨论、数形结合的数学思想方法.24、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论