2023届山东省济南市市中学区育英中学中考数学最后冲刺浓缩精华卷含答案解析_第1页
2023届山东省济南市市中学区育英中学中考数学最后冲刺浓缩精华卷含答案解析_第2页
2023届山东省济南市市中学区育英中学中考数学最后冲刺浓缩精华卷含答案解析_第3页
2023届山东省济南市市中学区育英中学中考数学最后冲刺浓缩精华卷含答案解析_第4页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届山东省济南市市中学区育英中学中考数学最后冲刺浓缩精华卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A.12 B.14 C.12.若关于x的不等式组无解,则m的取值范围()A.m>3 B.m<3 C.m≤3 D.m≥33.计算(ab2)3的结果是()A.ab5 B.ab6 C.a3b5 D.a3b64.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.55.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值()A.总不小于1B.总不小于11C.可为任何实数D.可能为负数6.某运动会颁奖台如图所示,它的主视图是()A. B. C. D.7.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣ B.π+ C.π+2 D.2π﹣28.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为()A.100° B.105° C.110° D.115°9.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A. B.C. D.10.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°二、填空题(共7小题,每小题3分,满分21分)11.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为,两侧离地面高处各有一盏灯,两灯间的水平距离为,则这个门洞的高度为_______.(精确到)12.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.13.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.14.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.15.中国的陆地面积约为9600000km2,把9600000用科学记数法表示为.16.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.17.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.三、解答题(共7小题,满分69分)18.(10分)解方程:=1.19.(5分)小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表超市女工人数占比62.5%62.5%50%75%超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.20.(8分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?21.(10分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE=1,求△PBD的面积.22.(10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?23.(12分)如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点.求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为.横、纵坐标都是整数的点叫做整点.①当时,直接写出区域内的整点个数;②若区域内的整点个数不超过8个,结合图象,求m的取值范围.24.(14分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.

2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【答案解析】

转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【题目详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P(奇数)=24=1【答案点睛】此题主要考查了几何概率,正确应用概率公式是解题关键.2、C【答案解析】

根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.【题目详解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式组无解,∴2+m≥2m﹣1,∴m≤3,故选C.【答案点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.3、D【答案解析】测试卷分析:根据积的乘方的性质进行计算,然后直接选取答案即可.测试卷解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.4、C【答案解析】

如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.【题目详解】如图,连接BD、CD在和中,同理可得:,即为⊙O的直径故选:C.【答案点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.5、A【答案解析】

利用配方法,根据非负数的性质即可解决问题;【题目详解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,

又∵(x+3)2≥0,(2y-1)2≥0,

∴x2+4y2+6x-4y+11≥1,

故选:A.【答案点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.6、C【答案解析】

从正面看到的图形如图所示:,故选C.7、D【答案解析】分析:观察图形可知,阴影部分的面积=S半圆ACD+S半圆BCD-S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴阴影部分的面积=S半圆ACD+S半圆BCD-S△ABC==.故选:D.点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积=S半圆ACD+S半圆BCD-S△ABC是解答本题的关键.8、B【答案解析】

根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【题目详解】∵四边形ABCD内接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故选:B.【答案点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.9、D【答案解析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:几何体的左视图是:

.故选D.10、D【答案解析】测试卷分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.考点:众数;算术平均数.二、填空题(共7小题,每小题3分,满分21分)11、9.1【答案解析】

建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标【题目详解】如图,以地面为x轴,门洞中点为O点,画出y轴,建立直角坐标系由题意可知各点坐标为A(-4,0)B(4,0)D(-3,4)设抛物线解析式为y=ax2+c(a≠0)把B、D两点带入解析式可得解析式为,则C(0,)所以门洞高度为m≈9.1m【答案点睛】本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键12、2【答案解析】

连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【题目详解】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=1,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值1.∴△BDM的周长的最小值为DB+AD=2+1=2.【答案点睛】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.13、(1,4).【答案解析】测试卷分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.14、【答案解析】

由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.【题目详解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案为-.【答案点睛】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.15、9.6×1.【答案解析】

将9600000用科学记数法表示为9.6×1.故答案为9.6×1.16、(x+1);.【答案解析】测试卷分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用.17、1【答案解析】

解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=1.故答案为1.【答案点睛】本题考查正多边形和圆;扇形面积的计算.三、解答题(共7小题,满分69分)18、【答案解析】

先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【题目详解】原方程变形为,方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),解得.检验:把代入(2x﹣1),(2x﹣1)≠0,∴是原方程的解,∴原方程的.【答案点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.19、(1)32(人),25(人);(2);(3)乙同学,见解析.【答案解析】

(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;

(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;

(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.【题目详解】解:(1)A超市共有员工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四个超市共有女工:20×=90(人).从这些女工中随机选出一个,正好是C超市的概率为=.(3)乙同学.理由:D超市有女工20×=15(人),共有员工15÷75%=20(人),再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为=≠75%.【答案点睛】本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【答案解析】测试卷分析:(1)根据扇形统计图的特征即可求得的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天”的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.21、(1)见解析;(2)AC∥BD,理由见解析;(3)【答案解析】

(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;

(2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;

(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.【题目详解】(1)证明:∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:结论:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如图所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均为等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=∴△PBD的面积S=BD•PM=××=.【答案点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.22、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【答案解析】

(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【题目详解】(1)设甲种树苗每棵的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论