




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版八年级(上)期末数学压轴题系列专题练习(含答案)北师大版八年级(上)期末数学压轴题系列专题练习(含答案)北师大版八年级(上)期末数学压轴题系列专题练习(含答案)资料仅供参考文件编号:2022年4月北师大版八年级(上)期末数学压轴题系列专题练习(含答案)版本号:A修改号:1页次:1.0审核:批准:发布日期:2018-2019学年北师大版八年级数学(上)八年级数学期末试题北师大版八年级上册期末压轴题系列11、如图,已知:点D是△ABC的边BC上一动点,且AB=AC,DA=DE,∠BAC=∠ADE=α.⑴如图1,当α=60°时,∠BCE=;⑵如图2,当α=90°时,试判断∠BCE的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;(图1)(图2)(图3)⑶如图3,当α=120°时,则∠BCE=;2、如图1,在平面直角坐标系中,直线与轴交于A,与轴交于B,BC⊥AB交轴于C。①求△ABC的面积。如图2,②D为OA延长线上一动点,以BD为直角边做等腰直角三角形BDE,连结EA.求直线EA的解析式.③点E是y轴正半轴上一点,且∠OAE=30°,OF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,是判断是否存在这样的点M、N,使得OM+NM的值最小,若存在,请写出其最小值,并加以说明.3.如图,直线与x轴、y轴分别交于A、B两点,直线与直线关于x轴对称,已知直线的解析式为,(1)求直线的解析式;(2)过A点在△ABC的外部作一条直线,过点B作BE⊥于E,过点C作CF⊥于F分别,请画出图形并求证:BE+CF=EF△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交与点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。①4.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足.①⑴判断△AOB的形状.②⑵如图②,正比例函数的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.②⑶如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连结PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.③③ 5、如图,已知△ABC和△ADC是以AC为公共底边的等腰三角形,E、F分别在AD和CD上,已知:∠ADC+∠ABC=180°,∠ABC=2∠EBF;(1)求证:EF=AE+FC(2)若点E、F在直线AD和BD上,则是否有类似的结论?
6、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.(1)探究线段BM、MN、NC之间的关系,并加以证明;(2)若点M、N分别是射线AB、CA上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图④中画出图形,并说明理由.(3)求证:CN-BM=MN图①图②图③图④图①图②图③图④北师大版八年级上册期末压轴题5答案;1、⑴如图1,当α=60°时,∠BCE=120°;⑵证明:如图,过D作DF⊥BC,交CA或延长线于F。易证:△DCE≌△DAF,得∠BCE=∠DFA=45°或135°.⑶如图3,当α=120°时,则∠BCE=30°或150°;2、①求△ABC的面积=36;②解:过E作EF⊥轴于F,延长EA交轴于H.易证:△OBD≌△FDE;得:DF=BO=AO,EF=OD;∴AF=EF,∴∠EAF=45°,∴△AOH为等腰直角三角形.∴OA=OH,∴H(0,-6)∴直线EA的解析式为:;③解:在线段OA上任取一点N,易知使OM+NM的值最小的是点O到点N关于直线AF对称点N’之间线段的长.当点N运动时,ON’最短为点O到直线AE的距离,即点O到直线AE的垂线段的长.∠OAE=30°,OA=6,所以OM+NM的值为3.3.(1)A(-3,0)B(0,3)C(0,-3)答:;易证△BEA≌△AFC;∴BE=AF,EA=FC,;∴BE+CF=AF+EA=EF(3)①对,OM=3过Q点作QH⊥y轴于H,则△QCH≌△PBO;∴QH=PO=OB=CH∴△QHM≌△POM;∴HM=OM;∴OM=BC-(OB+CM)=BC-(CH+CM)=BC-OM;∴OM=BC=34.解:⑴等腰直角三角形∵∴∴∵∠AOB=90°∴△AOB为等腰直角三角形⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90°∴∠MAO=∠MOB;∵AM⊥OQ,BN⊥OQ∴∠AMO=∠BNO=90°在△MAO和△BON中;∴△MAO≌△NOB;∴OM=BN,AM=ON,OM=BN∴MN=ON-OM=AM-BN=5;⑶PO=PD且PO⊥PD;如上图3,延长DP到点C,使DP=PC,连结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年项目管理中的重要管理角色考题试题及答案
- 跑道材料维修方案范本
- 证券从业资格证学习帮助试题及答案
- 项目实施的关键绩效指标设定题目及答案
- 2024年微生物检测的重要性提升试题及答案
- 税务政策对会计行业的影响试题及答案
- 煤制油品质量与标准研究考核试卷
- 种子种苗的长期保存与种子库建设考核试卷
- 生态资源监测与城市空气质量改善考核试卷
- 工程勘察技术规范考核试卷
- 网络安全服务方案
- 板翅式换热器介绍
- 人教九年级语文上册《沁园春 雪》示范课教学课件
- 团体旅游餐饮供餐合同协议
- 养殖项目的水土保持方案
- 中建通风与空调工程施工方案全套范本
- 医疗代表陌生拜访
- 中华人民共和国关税法
- 山西同文职业技术学院婴幼儿托育服务与管理人才培养方案
- 第13课 《精卫填海》第一课时(说课稿)-2024-2025学年统编版语文四年级上册
- 2025人教版高中物理必修一学考知识点复习指导课件
评论
0/150
提交评论