



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年吉林省辽源东辽县联考中考考前最后一卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是由4个相同的正方体搭成的几何体,则其俯视图是()A. B. C. D.2.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则的值为()A.3 B. C. D.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个4.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人 B.每人植树量的众数是4棵C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵5.计算的结果是(
)A. B. C. D.26.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是()A. B.C. D.7.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A. B. C. D.8.下列美丽的壮锦图案是中心对称图形的是()A. B. C. D.9.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大 B.线段EF的长逐渐减少C.线段EF的长不变 D.线段EF的长不能确定10.如图是某零件的示意图,它的俯视图是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).12.如图,扇形的半径为,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为______.13.已知:正方形ABCD.求作:正方形ABCD的外接圆.作法:如图,(1)分别连接AC,BD,交于点O;(2)以点O为圆心,OA长为半径作⊙O,⊙O即为所求作的圆.请回答:该作图的依据是__________________________________.14.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.15.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.16.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)17.已知函数y=|x2﹣x﹣2|,直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为_____.三、解答题(共7小题,满分69分)18.(10分)解不等式,并把它的解集表示在数轴上.19.(5分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.20.(8分)计算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.21.(10分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.(1)求tan∠ADF的值;(2)证明:DE是⊙O的切线;(3)若⊙O的半径R=5,求EF的长.22.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.求AB的长(精确到0.1米,参考数据:);已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.23.(12分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(14分)(1)计算:﹣22+|﹣4|+()-1+2tan60°(2)求不等式组的解集.
2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【答案解析】测试卷分析:从上面看是一行3个正方形.故选A考点:三视图2、C【答案解析】
连接D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF,则≌,根据全等三角形的性质可得:即根据等腰三角形的性质可得:设则即可求出的值.【题目详解】如图:连接D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF,则≌,即根据等腰三角形的性质可得:设则故选C.【答案点睛】考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.3、C【答案解析】
根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-b2a=-3根据函数与x轴有两个交点可得:b2故选C.【答案点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.4、D【答案解析】测试卷解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.5、C【答案解析】
化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.【题目详解】原式=3﹣2·=3﹣=.故选C.【答案点睛】本题主要考查二次根式的化简以及二次根式的混合运算.6、C【答案解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.【题目详解】A.当时,能判断;B.
当时,能判断;C.
当时,不能判断;D.
当时,,能判断.故选:C.【答案点睛】本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.7、C【答案解析】
画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【题目详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:.故答案为C.【答案点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8、A【答案解析】【分析】根据中心对称图形的定义逐项进行判断即可得.【题目详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【答案点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.9、C【答案解析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.【题目详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF=AR,为定值.∴线段EF的长不改变.故选:C.【答案点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.10、C【答案解析】
物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【题目详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【答案点睛】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.二、填空题(共7小题,每小题3分,满分21分)11、π+4【答案解析】根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是2.解:根据图形中正方形的性质,得∠AOB=90°,OA=OB=2.∴扇形OAB的弧长等于π.12、4cm【答案解析】
求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【题目详解】扇形的弧长==4π,
圆锥的底面半径为4π÷2π=2,
故圆锥的高为:=4,
故答案为4cm.【答案点睛】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.13、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【答案解析】
利用正方形的性质得到OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O上,从而得到⊙O为正方形的外接圆.【题目详解】∵四边形ABCD为正方形,∴OA=OB=OC=OD,∴⊙O为正方形的外接圆.故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【答案点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.14、1【答案解析】测试卷分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=1.即旗杆的高是1米.故答案为1.考点:相似三角形的应用.15、1.1【答案解析】
求出EC,根据菱形的性质得出AD∥BC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【题目详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案为1.1.【答案点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF∽△CEB,然后根据相似三角形的性质可求解.16、6.2【答案解析】
根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【题目详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【答案点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.17、1﹣1或﹣1【答案解析】
直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k的值,另外当y=kx+4过(1,0)时,也满足条件.【题目详解】解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,
则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),
把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,
则翻折部分的抛物线解析式为y=-x1+x+1(-1≤x≤1),
当直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,
直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,
即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,
解得k=1±1,
所以k的值为1+1或1-1.
当k=1+1时,经检验,切点横坐标为x=-<-1不符合题意,舍去.
当y=kx+4过(1,0)时,k=-1,也满足条件,故答案为1-1或-1.【答案点睛】本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1≤x≤1上时的解析式。三、解答题(共7小题,满分69分)18、x<5;数轴见解析【答案解析】【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.【题目详解】移项,得,去分母,得,移项,得,∴不等式的解集为,在数轴上表示如图所示:【答案点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.19、(1)证明见解析;(2)①∠OCE=45°;②EF=-2.【答案解析】【测试卷分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC.∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用内角和定理,得:∠OCE=45°.②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的倍,得CG=OG=2.FG=2.在Rt△OGE中,∠E=30°,得GE=,则EF=GE-FG=-2.【测试卷解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=.∴EF=GE-FG=-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.20、2【答案解析】
先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.【题目详解】解:原式=2+2﹣+2=2﹣2+2=2.【答案点睛】本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.21、(1);(2)见解析;(3)【答案解析】
(1)AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.【题目详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==;(2)连接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(3)设AD=x,则BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游景区设施场地租赁合同范本
- 拆迁安置补偿房交易合同范本解析
- 环保项目部分股权转让与生态修复协议
- 绿色食品采购咨询及招标代理服务合同
- 餐饮店加盟店区域保护与市场拓展协议书
- 成都市区限价商品房买卖合同范本
- 文化艺术中心停车场租赁服务合同
- 餐饮店服务员服务质量监控与劳动合同
- 财务会计劳动合同(财务审计)
- 波形钢腹板箱梁拼装技术专题
- 基于BOPPPS框架与线上线下混合教学模式的探索
- 中国瑜伽服市场需求现状调研及未来营销趋势研究报告
- DB32-T 186-2015建筑消防设施检测技术规程
- 2025年上半年广东省广州白云区太和镇政府雇员招聘16人易考易错模拟试题(共500题)试卷后附参考答案
- DBJ33T 1271-2022 建筑施工高处作业吊篮安全技术规程
- 外呼培训心得
- 2025年上半年四川凉山州委组织部凉山州人力资源和社会保障局引进人才1165人(第二批)重点基础提升(共500题)附带答案详解-1
- 2025年江苏盐城市城投集团招聘笔试参考题库含答案解析
- 糖尿病前期症状
- 福建省厦门市2023-2024学年高一上学期期末质检地理试题 附答案
- 应急物资采购合同
评论
0/150
提交评论