2023届湖北省武汉市部分学校中考数学五模试卷含答案解析_第1页
2023届湖北省武汉市部分学校中考数学五模试卷含答案解析_第2页
2023届湖北省武汉市部分学校中考数学五模试卷含答案解析_第3页
2023届湖北省武汉市部分学校中考数学五模试卷含答案解析_第4页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届湖北省武汉市部分学校中考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在测试卷卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在测试卷卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,若AB∥CD,则α、β、γ之间的关系为()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°2.对于有理数x、y定义一种运算“Δ”:xΔy=ax+by+c,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知3Δ5=15,4Δ7=28,则1Δ1的值为()A.-1 B.-11 C.1 D.113.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.cm C.8cm D.cm4.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A. B. C. D.5.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,156.下列各点中,在二次函数的图象上的是()A. B. C. D.7.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°8.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是()A.10 B.11 C.12 D.139.-的绝对值是()A.-4 B. C.4 D.0.410.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是()A.0个 B.1个或2个C.0个、1个或2个 D.只有1个二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解______.12.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是________.13.分解因式:4a3b﹣ab=_____.14.若,,则的值为________.15.抛物线y=mx2+2mx+5的对称轴是直线_____.16.因式分解:3a3﹣6a2b+3ab2=_____.三、解答题(共8题,共72分)17.(8分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41418.(8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求EG的长.19.(8分)解方程:-=120.(8分)如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.(1)求证:四边形CDBE为矩形;(2)若AC=2,,求DE的长.21.(8分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.22.(10分)如图,二次函数的图象与x轴交于和两点,与y轴交于点C,一次函数的图象过点A、C.(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量x的取值范围.23.(12分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)24.在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.求证:;求证:四边形BDFG为菱形;若,,求四边形BDFG的周长.

2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】

过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【题目详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.【答案点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.2、B【答案解析】

先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.【题目详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解这个方程组,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【答案点睛】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.3、B【答案解析】测试卷分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==6cm,∴圆锥的高为=3cm故选B.考点:圆锥的计算.4、D【答案解析】

两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.【题目详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故答案选:D.【答案点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.5、D【答案解析】

将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【题目详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【答案点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.6、D【答案解析】

将各选项的点逐一代入即可判断.【题目详解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x=-2时,y=-4,故点在二次函数的图象;故答案为:D.【答案点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.7、B【答案解析】

先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【题目详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【答案点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.8、B【答案解析】

根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.【题目详解】由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B.【答案点睛】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.9、B【答案解析】

直接用绝对值的意义求解.【题目详解】−的绝对值是.故选B.【答案点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.10、C【答案解析】

根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.【题目详解】∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,故选C.【答案点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.二、填空题(本大题共6个小题,每小题3分,共18分)11、a(3a+1)【答案解析】3a2+a=a(3a+1),故答案为a(3a+1).12、b<9【答案解析】

由方程有两个不相等的实数根结合根的判别式,可得出,解之即可得出实数b的取值范围.【题目详解】解:方程有两个不相等的实数根,

解得:.【答案点睛】本题考查的知识点是根的判别式,解题关键是牢记“当时,方程有两个不相等的实数根”.13、ab(2a+1)(2a-1)【答案解析】

先提取公因式再用公式法进行因式分解即可.【题目详解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【答案点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.14、-.【答案解析】分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为.点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.15、x=﹣1【答案解析】

根据抛物线的对称轴公式可直接得出.【题目详解】解:这里a=m,b=2m∴对称轴x=故答案为:x=-1.【答案点睛】解答本题关键是识记抛物线的对称轴公式x=.16、3a(a﹣b)1【答案解析】

首先提取公因式3a,再利用完全平方公式分解即可.【题目详解】3a3﹣6a1b+3ab1,=3a(a1﹣1ab+b1),=3a(a﹣b)1.故答案为:3a(a﹣b)1.【答案点睛】此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.三、解答题(共8题,共72分)17、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【答案解析】

根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.【题目详解】解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【答案点睛】本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.18、(1)详见解析;(2)36【答案解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中∠AED=∠B=90∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=3,∴EG的长=30×π×3180=19、【答案解析】【分析】先去分母,把分式方程化为一元一次方程,解一元一次方程,再验根.【题目详解】解:去分母得:解得:检验:把代入所以:方程的解为【答案点睛】本题考核知识点:解方式方程.解题关键点:去分母,得到一元一次方程,.验根是要点.20、(1)见解析;(2)1【答案解析】

分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.详解:(1)证明:∵CD⊥AB于点D,BE⊥AB于点B,∴.∴CD∥BE.又∵BE=CD,∴四边形CDBE为平行四边形.又∵,∴四边形CDBE为矩形.(2)解:∵四边形CDBE为矩形,∴DE=BC.∵在Rt△ABC中,,CD⊥AB,可得.∵,∴.∵在Rt△ABC中,,AC=2,,∴.∴DE=BC=1.点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.21、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).【答案解析】

(1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;(1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【题目详解】解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,∴A(3,0),C(0,2),∴OA=3,OC=2.∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=2,BC=OA=3.在Rt△ABC中,根据勾股定理得,AC==3.故答案为2,3,3;(1)选A.①由(1)知,BC=3,AB=2,由折叠知,CD=AD.在Rt△BCD中,BD=AB﹣AD=2﹣AD,根据勾股定理得,CD1=BC1+BD1,即:AD1=16+(2﹣AD)1,∴AD=5;②由①知,D(3,5),设P(0,y).∵A(3,0),∴AP1=16+y1,DP1=16+(y﹣5)1.∵△APD为等腰三角形,∴分三种情况讨论:Ⅰ、AP=AD,∴16+y1=15,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,∴16+y1=16+(y﹣5)1,∴y=,∴P(0,);Ⅲ、AD=DP,15=16+(y﹣5)1,∴y=1或2,∴P(0,1)或(0,2).综上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).选B.①由A①知,AD=5,由折叠知,AE=AC=1,DE⊥AC于E.在Rt△ADE中,DE==;②∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°.∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0);如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(),而点P1与点O关于AC对称,∴P1(),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣).综上所述:满足条件的点P的坐标为:(0,0),(),(﹣).【答案点睛】本题是一次函数综合题,主要考查了矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论