版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AmemberofNSGGroup1AmemberofNSGGroup1ApplicationofInorganicChemistryinIndustryFlatGlassandCoatingsOnGlassDrTroyManningAdvancedTechnologist,On-lineCoatingsPilkingtonEuropeanTechnicalCentreHallLaneLathomUKtroy.manningpilkington2ApplicationofInorganicChemiOutlineOverviewofFlatGlassindustryandNSG/PilkingtonFlatGlassmanufacture FloatGlassProcessCoatingtechnologywithintheglassindustryChemicalVapourDepositionExamplesofonlinecoatingapplicationsLowEmissivity/SolarControlSelfCleaningSummarySuggestedReading3OutlineOverviewofFlatGlassGlobalFlatGlassMarketGlobalMarket
37milliontonnes(4.4billionsq.m)BuildingProducts33mtonnes-Automotive4mtonnesOfwhich24million=highqualityfloatglass3million=sheet2million=rolled8million=lowerqualityfloat(mostlyChina)
GlobalValue
Atprimarymanufacturelevel€15billionAtprocessedlevel€50billion4GlobalFlatGlassMarketGlobalNSGandPilkingtoncombinedAglobalglassleader–thepureplayinFlatGlassCombinedannualsalesc.£4billionEqualtoAsahiGlassinscale,mostprofitableinFlatGlassOwnership/interestsin46floatlines6.4milliontonnesannualoutputWidenedAutomotivecustomerbase36,000employeesworldwideManufacturingoperationsin26countriesSalesin130+countries5NSGandPilkingtoncombinedAgManufactureofFlatGlassFourmainmethodsPlateGlass(1688)–moltenglasspouredontoaflatbed,spread,cooledandpolishedSheetGlass(1905)–continuoussheetofglassdrawnfromtankofmoltenglassRolledGlass(1920)–moltenglasspouredontototworollerstoachieveaneventhickness,makingpolishingeasier.Usedtomakepatternedandwiredglass.FloatGlass(1959)–moltenglasspouredontobedofmoltentinanddrawnoffincontinuousribbon.Giveshighqualityflatglasswitheventhicknessandfirepolishfinish.~320float-glasslinesworldwide6ManufactureofFlatGlassFourMeltingfurnaceFloatbathCoolinglehrContinuosribbonofglassCrosscuttersLargeplatelift-offdevicesSmallplatelift-offdevicesRawmaterialfeedTheFloat-GlassProcessOperatesnon-stopfor10-15years6000km/year0.4mm-25mmthick,upto3mwide7MeltingfurnaceFloatbathCooliTheFloatGlassProcess8TheFloatGlassProcess8Rawmaterials9Rawmaterials9MeltingFurnace10MeltingFurnace10FloatBath11FloatBath11FloatGlassPlant12FloatGlassPlant12TheFloat-GlassProcessFine-grainedingredients,closelycontrolledforquality,aremixedtomakebatch,whichflowsasablanketontomoltenglassat1500ºCinthemelter.Thefurnacecontains2000tonnesofmoltenglass.Afterabout50hours,glassfromthemelterflowsgentlyoverarefractoryspoutontothemirror-likesurfaceofmoltentin,startingat1100ºCandleavingthefloatbathasasolidribbonat600ºC.Despitethetranquillitywithwhichfloatglassisformed,considerablestressesaredevelopedintheribbonasitcools.13TheFloat-GlassProcessFine-grRawMaterialsOxide %inglassRawmaterialsourceSiO2 72.2 SandNa2O 13.4 SodaAsh(Na2CO3)CaO 8.4 Limestone(CaCO3)MgO 4.0 Dolomite(MgCO3.CaCO3)Al2O3 1.0 Impurityinsand,FeldsparorCalumiteFe2O3 0.11 ImpurityinsandorRouge(Fe2O3)SO3 0.20 SodiumsulphateC 0.00 Anthracite14RawMaterialsOxide %inglRawmaterials
SiO2 Verydurable,BUThighmeltingpoint(>1700°C)!+Na2O Meltsatalowertemperature,BUTdissolvesinwater!+CaO Moredurable,BUTwillnotforminbathwithout crystallisation+MgO Glassstaysasasuper-cooledliquidinbath,no crystallisation+Al2O3 Addsdurability+Fe2O3 Addsrequiredlevelof‘green’colourforcustomer15RawmaterialsSiO2 VerydurablChemistryofGlassImportantglassmakingchemistry:basicreactionsNa2CO3+SiO2
1500ºCNa2SiO3+CO2Na2SiO3+xSiO2
Na2SO4(Na2O)(SiO2)(x+1)Digestion16ChemistryofGlassImportantglCompositionofGlass17CompositionofGlass17StructureofGlassRandomnetworkof[SiO4]-tetrahedralunits.Na-OenterSi-Onetworkaccordingtovalency–NetworkFormersCaandMg–NetworkModifiers–makestructuremorecomplextopreventcrystallisation18StructureofGlassRandomnetwoBody-tintedGlassIonResultingColourofGlassFerrous(Fe2+)BlueFerric(Fe3+)YellowFe2++Fe3+GreenSelenium(SeO2)BronzeCobalt(Co2+)Grey/BlueNickel(Ni2+)Grey19Body-tintedGlassIonResultingCIELa*b*colourspace20CIELa*b*colourspace20CIELa*b*colourspace21CIELa*b*colourspace21FunctionsofaWindowLightin–homes,officesLightout–shops,museumdisplaysHeatin–heatingdominatedclimatesHeatout–coolingdominatedclimatesCanchangepropertiesofglassbyapplyingcoatingstothesurface22FunctionsofaWindowLightinMakingawindowfunctional-coatingsAwidevarietyofcoatingtechnologiesareutilisedbytheglassindustrySprayPyrolysisPowderSprayChemicalVapourDepositionSputterCoatingThermalEvaporationCoatingsSolGelCoatings
TheseareappliedOnLinei.e.astheglassisproducedonthefloatlineOffLinei.e.coatingnotnecessarilyproducedatthesamelocation23Makingawindowfunctional-cVariationsofCVDAtmosphericPressure–APCVDLowPressure-LPCVDAerosolAssisted-AACVDMetalorganic–MOCVDCombustion/Flame–CCVDHotWire/Filament–HWCVD/HFCVDPlasmaEnhanced-PECVDLaserAssisted–LACVDMicrowaveAssisted–MWCVDAtomicLayerDeposition–ALD24VariationsofCVDAtmosphericPChemicalVapourDeposition25ChemicalVapourDeposition25ChemicalVapourDepositionMaingasflowregionGasPhaseReactionsSurfaceDiffusionDesorptionofFilmPrecursorByProductsDiffusiontosurface26ChemicalVapourDepositionMainChemicalVapourDepositionAnimationkindlysuppliedbyDr.WarrenCross,UniversityofNottingham27ChemicalVapourDepositionAnimCVDprocessesandparametersProcessParametersTransportPrecursorsGasphasereactionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentration,precursors,carriergasDiffusionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentrationAdsorptionTemperature,gasphaseconcentration,numberandnatureofsitesSurfacereactionTemperature,natureofsurfaceDesorptionofby-productsTemperature,pressure,natureofsurfaceDiffusiontolatticesiteTemperature,surfacemobility,numberofvacantsites28CVDprocessesandparametersPrCVDPrecursorPropertiesVolatile–gas,liquid,lowmeltingpointsolid,sublimablesolidPureStableundertransportReact/Decomposecleanlytogivedesiredcoating–minimisecontaminantsCanbesinglesourceordual/multi-source29CVDPrecursorPropertiesVolatiCVDPrecursorsSingleSource–pyrolysis(thermaldecomposition)e.gTi(OC2H5)4TiO2+4C2H4+2H2O(>400ºC)Oxidatione.gSiH4(g)+O2(g)SiO2(s)+2H2(g)Reductione.g.WF6(g)+3H2(g)W(s)+6HF(g)Dualsourcee.g.TiCl4(g)+4EtOH(g)TiO2(s)+4HCl(g)+2EtOEt(g)30CVDPrecursorsSingleSource–DualSourceandSingleSourcePrecursorsFilmDualSourceSingleSourceGaAsGaCl3+AsH3Me2Ga(AsH2)TiNTiCl4+NH3Ti(NMe2)4WSiWCl6+SiH4W(SiR)4TiO2TiCl4+H2OTi(OiPr)4CdSeCdMe2+H2SeCd(SeR)231DualSourceandSingleSourceTransportofPrecursorsBubblerforliquidsandlowmeltingsolidsDirectLiquidInjection–syringeandsyringedriverforliquidsandsolutionsSublimationforsolids–hotgaspassedoverheatedprecursorAerosolofprecursorsolutions32TransportofPrecursorsBubblerEffectofTemperatureonGrowthRateIndependentoftemperature33EffectofTemperatureonGrowtFlowconditionsLaminarFlowregimeTurbulentFlowRegime34FlowconditionsLaminarFlowreReynoldsNumberDimensionlessnumberdescribingflowconditionsr=Massdensityrelatedtoconcnandpartialpressureu=averagevelocity=viscosityL=relevantlength,relatedtoreactordimensionsIfRe<10LaminarflowIfRe>>1000fullyturbulentflowRealityisbetweenthetwoextremes35ReynoldsNumberDimensionlessnDimensionlessNumbersReducesthenumberofparametersthatdescribeasystemMakesiteasiertodeterminerelationshipsexperimentallyForexample:DragForceonaSphere Variables:Force=f(velocity,diameter,viscosity,density)Canbereducedto2“dimensionlessgroups”: Dragcoefficient(CD)andReynoldsnumber(Re)36DimensionlessNumbersReducestDimensionlessNumbersLaminarflowregimeTurbulentflowregimeExperimentalvaluesofCDforspheresinfluidflowsatvariousRe37DimensionlessNumbersLaminarfBoundaryLayer–gasvelocityFrictionalforcesagainstreactorwallsdecreasegasvelocityTheboundarylayerthicknesscanbeestimatedfrom:38BoundaryLayer–gasvelocityFBoundaryLayer-temperatureContactwithhotsurfacesincreasestemperature39BoundaryLayer-temperatureCoBoundaryLayer–precursorconcentrationDepletionofprecursordecreasesgasphaseconcentration40BoundaryLayer–precursorconNucleationandGrowthVanderWaalstypeadsorptionofprecursortosubstratePrecursorsthendiffuseacrosssurfacePrecursorsdiffuseacrossboundarylayertosurfaceAndcanbedesorbedbackintomaingasflowOrcanfindlowenergybindingsitestocoalesceintofilmMainGasFlow41NucleationandGrowthVanderWNucleationandGrowthSubstrateTemperatureGrowthRateSurfaceDiffusionCrystallinityLowHighSlowrelativefluxofprecursorsAmorphous–nocrystallinestructureHighLowFastrelativetofluxofprecursorsEpitaxial–replicatessubstratestructureIntermediateIntermediateIntermediatePolycrystalline42NucleationandGrowthSubstrateGrowthMechanisms(b)Frank-vanderMerweLayergrowth(c)Stranski-KastanovMixedlayeredandislandgrowth(a)Volmer-WeberIslandgrowth43GrowthMechanisms(b)Frank-vThinFilmAnalysisManytechniquesareusedtocharacterisethinfilmsExamplesincludeXRD–crystallinity,phaseXRR–layerthickness,layerroughnessSEM/EDX/WDX–morphology,thickness,compositionRaman–phase,bondingFTIR–phase,bondingXPS–composition,depthprofiling,dopingSIMS–composition,depthprofiling,dopingAFM–roughness,surfacemorphologyTEM–crystallinestructure,crystaldefectsAnalysisoffunctionalproperties44ThinFilmAnalysisManytechniqCVDonGlassForon-linecoatingofglasswerequire:Highgrowthrates–requiredthicknessin<2sStablechemistry–uniformcoatingsforcontinuousoperationformanydaysGoodadhesiontoglassHighefficiency–reducecosts45CVDonGlassForon-linecoatinAPCVDStrengthsandWeaknessesStrengthsWeaknessesResultOn-linecoatingpossibleReducedflexibilityReducedlabourcosts,highvolumemanufactureFreshsubstratesurfacesNowashingstep,enhancedadhesionHighdepositionratesNeedtomatchlinespeedThickfilmspossiblewithhighthroughputHardfilmsImprovedprocessabilityandperformanceStructurecontrolpossiblee.g.crystallinityRoughsurfaceImprovedfunctionalpropertiesanddurabilityVolatileprecursorsrequiredLimitedrangeofmaterials46APCVDStrengthsandWeaknessesOn-LineCoatingPositionsLoadrawmaterialsMeltingFloatingCoolingCuttingandStacking25ºCGlassribbon600ºC1050ºC40ºC1500ºCPossiblepositionsforCVDcoatingsystems47On-LineCoatingPositionsLoadLaminarFlowCVDCoaterGlassGlassRibbonFlowUp-StreamExhaustDown-StreamExhaustPrecursorgasesOutsideAtmosphere48LaminarFlowCVDCoaterGlassGlAPCVDApplicationsonGlassCoatingtechnologyallowsustoaddfunctionalitytoglassCoatingtechnologyistodayusedforavarietyofproductsLowEmissivitycoatingstoreduceheatingbillsSolarControlcoatingstoreducesolarheatgainTechnicalproductse.g.TCO’sforLCDdisplays,solarcellsAnti-ReflectiveProductsHydrophobicCoatingsSelfCleaningCoatingsSmartCoatingse.g.electrochromics,thermochromics,photochromics49APCVDApplicationsonGlassCoaLow-EmissivityCoatingsDesignedtoreduceheatingbillsInadoubleglazedunit,alow-emissivitycoatingontheinnerpaneblocksradiativeheattryingtoescapeintothecavity50Low-EmissivityCoatingsDesigneEmissivityEmissivityistheratioofradiationemittedbyablackbodyorasurfacetothetheoreticalradiationpredictedbyPlanck’slaw.Surfaceemissivityisgenerallymeasuredindirectlybyassumingthate
=
1
-
reflectivity,usuallyataspecifiedwavelength51EmissivityEmissivityistheraSolarSpectrumWehavetodistinguishbetween:whatcomesfromtheoutsidetotheinside–solarspectrumwhatgoesfromtheinsidetotheoutside-heatVisiblelightInfra-RedUV52SolarSpectrumWehavetodistiOutsidetoInsideOptimalcurveforsolarcontrol-noUV -allvisiblelightpass -noIROptimalcurveforlow-e-noUV -allvisiblelightpass -allIRpass53OutsidetoInsideOptimalcurveInsidetoOutside–NoGlazing5µm50µmHeatradiation(“Blackbody”)at23.9ºC
UVVisiblelightIR54InsidetoOutside–NoGlazingInsidetoOutside–Low-eCoatedGlassLowemissivitycoatedproductslimittheblackbodyradiationi.e.theenergylossesthroughthewindow: K-Glasse=0.1555InsidetoOutside–Low-eCoatTransparentConductingOxidesDopedmetaloxidesdisplayingn-typeconductivityF-substitutesforO2-intheSnO2latticereleasinganelectronintotheconductionbandi.e.Sn4+O2-2-xF-xe-xClosetometallicconductivity(15W/€)canbeachievedbutwithhighopticaltransmittance(bandgap~4eV)C.G.Granqvist,Adv.Mater.,2019,15,1789-180356TransparentConductingOxidesDCVDofSnO2:FSnCl4+H2O+HFSnO2:F+HCl(~1.5at%F)MuchgasphasereactionGasesintroducedseparatelyinturbulentflowregimeVeryhighgrowthrates>100nm/spossibleLowprecursorefficiency<10%SiCxOy(70nm)SnO2:F(350nm)GlassSiH4+C2H4+CO2
SiCxOy+H2O+otherby-productsUsedascoloursuppressionandbarrierlayer57CVDofSnO2:FSnCl4+H2O+HFLowEmissivityCoatingGenerallybasedonSnO2:F(TransparentConductiveOxide)SiCOunderlayerusedascoloursuppressant58LowEmissivityCoatingGenerallLow-EandSolarControlCoatings59Low-EandSolarControlCoatinSelf-CleaningGlassTwomechanisms:SuperhydrophilicityPhotocatalyticdegradationoforganicmatter.TiO2coating60Self-CleaningGlassTwomechaniSuperhydrophilicityOxygenvacanciesTiO-TiOTiHTiTiTiH+TiOTiOTiTiOTiOTiHHH2O(OH-,
H+)WaterdropletsUniformwaterfilmUVilluminationtimeContactangleooooooodarkUV61SuperhydrophilicityOxygenvacaPhotocatalyticActivityUltrabandgapirradiationofTiO2
GenerationofelectronholeinvalencebandHolemigratestothesurfaceandresultsinoxidationoforganicmaterialValence
BandConductance
BandOxidationReductionAA+BB-h+hn62PhotocatalyticActivityUltrabSemi-conductorPhotocatalysisA.Mills,SLeHunte,J.Photochem.PhotobiolA,2019,108,1-35.63Semi-conductorPhotocatalysisACVDofActivTMSiO2(30nm)TiO2(17nm)GlassSiH4+O2+C2H4
SiO2+by-productsUsedasbarrierlayertopreventdiffusionofNaionsintoTiO2layerTiCl4+EtOAcTiO2+HCl+organicby-productsLaminarFlowregimeReasonablegrowthratesandprecursorefficiency64CVDofActivTMSiO2(30nm)TiO2ActivTM65ActivTM65ActivTM66ActivTM66ActivTM67ActivTM67Superhydrophilicity15minsUVExposure30minsUVExposure45minsUVExposureBeforeUVExposure68Superhydrophilicity15minsUVPhotocatalyticEffect
UV-AbsorptionO2-OH*OrganicSoilH2O+CO2GlassBarrierLayerTiO2-Layer69PhotocatalyticEffectUV-AbsoPhotocatalyticEffectThephotoactivityofthecoatingcanbemeasuredbymonitoringthedecompositionofastandardcontaminantAthinfilmofstearicacid(n-octadecanoicacid,~200Å)isappliedfromamethanolsolutionontothecoatingStearicacidusedasatypicalorganiccontaminantFTIR(Fouriertransforminfra-redspectroscopy)usedtodetectC-HstretchofstearicacidC-HabsorptionintensitymeasuredaftervaryingUVexposure70PhotocatalyticEffectThephotoStearicAcidDecompositionC-HAbsorptionZeroUVexposureC-HAbsorption~60minsUVexposureUV0.77W/m2340nm71StearicAcidDecompositionC-HPilkingtonActivTM72PilkingtonActivTM72SummaryScaleoftheGlobalFlatGlassIndustryManufacturingFlatGlass–FloatGlassProcessCoatingGlass–ChemicalVapourDepositionExamplesofcommercialglazingcoatingspreparedbyCVD73SummaryScaleoftheGlobalFlaRecommendedReadingD.W.SheelandM.E.PembleAtmosphericPressureCVDCoatingsonGlass,ICCG42019
cvdtechnologies.co.uk/CVD%20on%20Glass.pdfM.L.Hitchman,K.F.JensenChemicalVaporDepositionAcademicPress,1993W.S.Rees,CVDofNon-metals,VCH,Weinheim,2019M.OhringTheMaterialsScienceofThinFilms,AcademicPress,2019pilkington74RecommendedReadingD.W.SheelFirstinGlass™75FirstinGlass™75谢谢你的阅读知识就是财富丰富你的人生谢谢你的阅读知识就是财富AmemberofNSGGroup77AmemberofNSGGroup1ApplicationofInorganicChemistryinIndustryFlatGlassandCoatingsOnGlassDrTroyManningAdvancedTechnologist,On-lineCoatingsPilkingtonEuropeanTechnicalCentreHallLaneLathomUKtroy.manningpilkington78ApplicationofInorganicChemiOutlineOverviewofFlatGlassindustryandNSG/PilkingtonFlatGlassmanufacture FloatGlassProcessCoatingtechnologywithintheglassindustryChemicalVapourDepositionExamplesofonlinecoatingapplicationsLowEmissivity/SolarControlSelfCleaningSummarySuggestedReading79OutlineOverviewofFlatGlassGlobalFlatGlassMarketGlobalMarket
37milliontonnes(4.4billionsq.m)BuildingProducts33mtonnes-Automotive4mtonnesOfwhich24million=highqualityfloatglass3million=sheet2million=rolled8million=lowerqualityfloat(mostlyChina)
GlobalValue
Atprimarymanufacturelevel€15billionAtprocessedlevel€50billion80GlobalFlatGlassMarketGlobalNSGandPilkingtoncombinedAglobalglassleader–thepureplayinFlatGlassCombinedannualsalesc.£4billionEqualtoAsahiGlassinscale,mostprofitableinFlatGlassOwnership/interestsin46floatlines6.4milliontonnesannualoutputWidenedAutomotivecustomerbase36,000employeesworldwideManufacturingoperationsin26countriesSalesin130+countries81NSGandPilkingtoncombinedAgManufactureofFlatGlassFourmainmethodsPlateGlass(1688)–moltenglasspouredontoaflatbed,spread,cooledandpolishedSheetGlass(1905)–continuoussheetofglassdrawnfromtankofmoltenglassRolledGlass(1920)–moltenglasspouredontototworollerstoachieveaneventhickness,makingpolishingeasier.Usedtomakepatternedandwiredglass.FloatGlass(1959)–moltenglasspouredontobedofmoltentinanddrawnoffincontinuousribbon.Giveshighqualityflatglasswitheventhicknessandfirepolishfinish.~320float-glasslinesworldwide82ManufactureofFlatGlassFourMeltingfurnaceFloatbathCoolinglehrContinuosribbonofglassCrosscuttersLargeplatelift-offdevicesSmallplatelift-offdevicesRawmaterialfeedTheFloat-GlassProcessOperatesnon-stopfor10-15years6000km/year0.4mm-25mmthick,upto3mwide83MeltingfurnaceFloatbathCooliTheFloatGlassProcess84TheFloatGlassProcess8Rawmaterials85Rawmaterials9MeltingFurnace86MeltingFurnace10FloatBath87FloatBath11FloatGlassPlant88FloatGlassPlant12TheFloat-GlassProcessFine-grainedingredients,closelycontrolledforquality,aremixedtomakebatch,whichflowsasablanketontomoltenglassat1500ºCinthemelter.Thefurnacecontains2000tonnesofmoltenglass.Afterabout50hours,glassfromthemelterflowsgentlyoverarefractoryspoutontothemirror-likesurfaceofmoltentin,startingat1100ºCandleavingthefloatbathasasolidribbonat600ºC.Despitethetranquillitywithwhichfloatglassisformed,considerablestressesaredevelopedintheribbonasitcools.89TheFloat-GlassProcessFine-grRawMaterialsOxide %inglassRawmaterialsourceSiO2 72.2 SandNa2O 13.4 SodaAsh(Na2CO3)CaO 8.4 Limestone(CaCO3)MgO 4.0 Dolomite(MgCO3.CaCO3)Al2O3 1.0 Impurityinsand,FeldsparorCalumiteFe2O3 0.11 ImpurityinsandorRouge(Fe2O3)SO3 0.20 SodiumsulphateC 0.00 Anthracite90RawMaterialsOxide %inglRawmaterials
SiO2 Verydurable,BUThighmeltingpoint(>1700°C)!+Na2O Meltsatalowertemperature,BUTdissolvesinwater!+CaO Moredurable,BUTwillnotforminbathwithout crystallisation+MgO Glassstaysasasuper-cooledliquidinbath,no crystallisation+Al2O3 Addsdurability+Fe2O3 Addsrequiredlevelof‘green’colourforcustomer91RawmaterialsSiO2 VerydurablChemistryofGlassImportantglassmakingchemistry:basicreactionsNa2CO3+SiO2
1500ºCNa2SiO3+CO2Na2SiO3+xSiO2
Na2SO4(Na2O)(SiO2)(x+1)Digestion92ChemistryofGlassImportantglCompositionofGlass93CompositionofGlass17StructureofGlassRandomnetworkof[SiO4]-tetrahedralunits.Na-OenterSi-Onetworkaccordingtovalency–NetworkFormersCaandMg–NetworkModifiers–makestructuremorecomplextopreventcrystallisation94StructureofGlassRandomnetwoBody-tintedGlassIonResultingColourofGlassFerrous(Fe2+)BlueFerric(Fe3+)YellowFe2++Fe3+GreenSelenium(SeO2)BronzeCobalt(Co2+)Grey/BlueNickel(Ni2+)Grey95Body-tintedGlassIonResultingCIELa*b*colourspace96CIELa*b*colourspace20CIELa*b*colourspace97CIELa*b*colourspace21FunctionsofaWindowLightin–homes,officesLightout–shops,museumdisplaysHeatin–heatingdominatedclimatesHeatout–coolingdominatedclimatesCanchangepropertiesofglassbyapplyingcoatingstothesurface98FunctionsofaWindowLightinMakingawindowfunctional-coatingsAwidevarietyofcoatingtechnologiesareutilisedbytheglassindustrySprayPyrolysisPowderSprayChemicalVapourDepositionSputterCoatingThermalEvaporationCoatingsSolGelCoatings
TheseareappliedOnLinei.e.astheglassisproducedonthefloatlineOffLinei.e.coatingnotnecessarilyproducedatthesamelocation99Makingawindowfunctional-cVariationsofCVDAtmosphericPressure–APCVDLowPressure-LPCVDAerosolAssisted-AACVDMetalorganic–MOCVDCombustion/Flame–CCVDHotWire/Filament–HWCVD/HFCVDPlasmaEnhanced-PECVDLaserAssisted–LACVDMicrowaveAssisted–MWCVDAtomicLayerDeposition–ALD100VariationsofCVDAtmosphericPChemicalVapourDeposition101ChemicalVapourDeposition25ChemicalVapourDepositionMaingasflowregionGasPhaseReactionsSurfaceDiffusionDesorptionofFilmPrecursorByProductsDiffusiontosurface102ChemicalVapourDepositionMainChemicalVapourDepositionAnimationkindlysuppliedbyDr.WarrenCross,UniversityofNottingham103ChemicalVapourDepositionAnimCVDprocessesandparametersProcessParametersTransportPrecursorsGasphasereactionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentration,precursors,carriergasDiffusionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentrationAdsorptionTemperature,gasphaseconcentration,numberandnatureofsitesSurfacereactionTemperature,natureofsurfaceDesorptionofby-productsTemperature,pressure,natureofsurfaceDiffusiontolatticesiteTemperature,surfacemobility,numberofvacantsites104CVDprocessesandparametersPrCVDPrecursorPropertiesVolatile–gas,liquid,lowmeltingpointsolid,sublimablesolidPureStableundertransportReact/Decomposecleanlytogivedesiredcoating–minimisecontaminantsCanbesinglesourceordual/multi-source105CVDPrecursorPropertiesVolatiCVDPrecursorsSingleSource–pyrolysis(thermaldecomposition)e.gTi(OC2H5)4TiO2+4C2H4+2H2O(>400ºC)Oxidatione.gSiH4(g)+O2(g)SiO2(s)+2H2(g)Reductione.g.WF6(g)+3H2(g)W(s)+6HF(g)Dualsourcee.g.TiCl4(g)+4EtOH(g)TiO2(s)+4HCl(g)+2EtOEt(g)106CVDPrecursorsSingleSource–DualSourceandSingleSourcePrecursorsFilmDualSourceSingleSourceGaAsGaCl3+AsH3Me2Ga(AsH2)TiNTiCl4+NH3Ti(NMe2)4WSiWCl6+SiH4W(SiR)4TiO2TiCl4+H2OTi(OiPr)4CdSeCdMe2+H2SeCd(SeR)2107DualSourceandSingleSourceTransportofPrecursorsBubblerforliquidsandlowmeltingsolidsDirectLiquidInjection–syringeandsyringedriverforliquidsandsolutionsSublimationforsolids–hotgaspassedoverheatedprecursorAerosolofprecursorsolutions108TransportofPrecursorsBubblerEffectofTemperatureonGrowthRateIndependentoftemperature109EffectofTemperatureonGrowtFlowconditionsLaminarFlowregimeTurbulentFlowRegime110FlowconditionsLaminarFlowreReynoldsNumberDimensionlessnumberdescribingflowconditionsr=Massdensityrelatedtoconcnandpartialpressureu=averagevelocity=viscosityL=relevantlength,relatedtoreactordimensionsIfRe<10LaminarflowIfRe>>1000fullyturbulentflowRealityisbetweenthetwoextremes111ReynoldsNumberDimensionlessnDimensionlessNumbersReducesthenumberofparametersthatdescribeasystemMakesiteasiertodeterminerelationshipsexperimentallyForexample:DragForceonaSphere Variables:Force=f(velocity,diameter,viscosity,density)Canbereducedto2“dimensionlessgroups”: Dragcoefficient(CD)andReynoldsnumber(Re)112DimensionlessNumbersReducestDimensionlessNumbersLaminarflowregimeTurbulentflowregimeExperimentalvaluesofCDforspheresinfluidflowsatvariousRe113DimensionlessNumbersLaminarfBoundaryLayer–gasvelocityFrictionalforcesagainstreactorwallsdecreasegasvelocityTheboundarylayerthicknesscanbeestimatedfrom:114BoundaryLayer–gasvelocityFBoundaryLayer-temperatureContactwithhotsurfacesincreasestemperature115BoundaryLayer-temperatureCoBoundaryLayer–precursorconcentrationDepletionofprecursorde
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 舞蹈艺术之魅力
- 人事部在企业战略中的角色计划
- 感恩父母与爱同行的演讲稿5篇
- 社团运营与成员发展
- 《本科心律失常》课件
- 教授能量转换守恒
- 北师大版八年级下册数学期末测试题
- 印刷设备智能化升级-第1篇-洞察分析
- 牙体修复材料研究-洞察分析
- 遥感数据处理与分析-洞察分析
- 【安吉物流股份有限公司仓储管理现状及问题和优化研究15000字(论文)】
- 火灾自动报警系统施工及验收调试报告
- 中国成人血脂异常防治指南课件
- 2023塔式太阳能热发电厂集热系统设计规范
- 识别药用植物种类-识别药用被子植物
- 沪教版八年级数学上册《后记》教案及教学反思
- 2023届高考英语《新课程标准》3000词总表(字母顺序版)素材
- 四川省地图含市县地图矢量分层地图行政区划市县概况ppt模板-2
- 引水隧洞专项施工方案
- 手机连接打印机
- 知识图谱知到章节答案智慧树2023年浙江大学
评论
0/150
提交评论