版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学二轮专题复习《圆》解答题练习LISTNUMOutlineDefault\l3如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=eq\f(\r(5),5),EF=2eq\r(5),求CD的长.LISTNUMOutlineDefault\l3如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.LISTNUMOutlineDefault\l3如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是弧DE的中点.
(1)求证:直线l是⊙O的切线;
(2)若PA=6,求PB的长LISTNUMOutlineDefault\l3如图,AB是⊙O的直径,点P是弦AC上一动点(不与A、C重合),过点P作PE⊥AB,垂足为点E,射线EP交eq\o\ac(AC,\s\up8(︵))于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是eq\o\ac(AC,\s\up8(︵))的中点时,判断以A、O、C、F为顶点的四边形是什么特殊四边形?说明理由.LISTNUMOutlineDefault\l3如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E.过点D作DF⊥AB,垂足为F,连结DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.LISTNUMOutlineDefault\l3如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.LISTNUMOutlineDefault\l3如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.LISTNUMOutlineDefault\l3如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求PE:CE的值.LISTNUMOutlineDefault\l3如图,CE是⊙O的直径,BC切⊙O于点C,连接OB,作ED//OB交⊙O于点D,BD的延长线与CE的延长线交于点A.
(1)求证:AB是⊙O的切线;
(22)若⊙O的半径为1,tan∠DEO=,tan∠A=,求AE的长.LISTNUMOutlineDefault\l3如图,C、D是以AB为直径的⊙O上的点,弧AC=弧BC,弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2-CE2=CE∙DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.LISTNUMOutlineDefault\l3如图,已知在△ABC中,⊙O在AB上,AC为⊙O的弦,延长BC至D,使AD为⊙O切线,且DA=DC.(1)求证:BD为⊙O切线;(2)若AB=9,AD=12,求BD的长及⊙O的半径;(3)若⊙O的半径为6,tan∠BAC=,求CD的长.LISTNUMOutlineDefault\l3如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.LISTNUMOutlineDefault\l3已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.①判断OQ与AC的位置关系,并说明理由;②求线段PQ的长.LISTNUMOutlineDefault\l3如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.LISTNUMOutlineDefault\l3如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.LISTNUMOutlineDefault\l3如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.(1)求证:PM=PN;(2)若BD=4,PA=1.5AO,过点B作BC∥MP交⊙O于C点,求BC的长.
LISTNUMOutlineDefault\l3\s0答案解析LISTNUMOutlineDefault\l3解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2eq\r(5),∴AB=2AE=4eq\r(5),在Rt△ABC中,AC=AB•sinB=4,∴BC=8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.LISTNUMOutlineDefault\l3(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.LISTNUMOutlineDefault\l3(1)证明:连接DE,OA.
∵PD是直径,∴∠DEP=90°,
∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,
∵,∴OA⊥DE,∴OA⊥BF,
∴直线l是⊙O的切线.
(2)作OH⊥PA于H.
∵OA=OP,OH⊥PA,∴AH=PH=3,
∵OA∥PB,∴∠OAH=∠APB,
∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,
LISTNUMOutlineDefault\l3(1)证明:连结OC.∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,∴∠APE=∠PCD.∵∠APE=∠DPC,∴∠DPC=∠PCD,∴DC=DP.(2)解:以A、O、C、F为顶点的四边形是菱形.理由:连结BC、OF、AF.∵∠CAB=30°∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°.∵F是eq\o\ac(AC,\s\up8(︵))的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形AOCF为菱形.LISTNUMOutlineDefault\l3解:(1)证明:如图,连结OD.∵AB=AC,∴∠B=∠C.∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB.∵DF⊥AB,∴OD⊥DF.∵点D在⊙O上,∴直线DF与⊙O相切;(2)∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°.∵∠AED+∠BED=180°,∴∠BED=∠ACD.又∵∠B=∠B,∴△BED∽△BCA.∴eq\f(BD,BA)=eq\f(BE,BC).∵OD∥AB,AO=CO,∴BD=CD=eq\f(1,2)BC=3,又∵AE=7,∴eq\f(3,7+BE)=eq\f(BE,6),解得BE=2.∴AC=AB=AE+BE=7+2=9.LISTNUMOutlineDefault\l3(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,LISTNUMOutlineDefault\l3解:LISTNUMOutlineDefault\l3LISTNUMOutlineDefault\l3解:LISTNUMOutlineDefault\l3解:LISTNUMOutlineDefault\l3解:(1)连接OC,证明略;(2)BD=3,半径为4;(3)连OD,利用相似,AD=CD=18.LISTNUMOutlineDefault\l3(1)证明:连接OC,∵点C在⊙0上,0A=OC,∴∠OCA=∠OAC,∵CD⊥PA,∴∠CDA=90°,有∠CAD+∠DCA=90°,∵AC平分∠PAE,∴∠DAC=∠CAO。∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。又∵点C在⊙O上,OC为⊙0的半径,∴CD为⊙0的切线.(2)解:过0作0F⊥AB,垂足为F,∴∠OCA=∠CDA=∠OFD=90°,∴四边形OCDF为矩形,∴0C=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得.即,化简得:解得x=2或x=9。由AD<DF,知0<x<5,故x=2。从而AD=2,AF=5-2=3.∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.LISTNUMOutlineDefault\l3解:(1)如图①,连接OQ.∵线段PQ所在的直线与⊙O相切,点Q在⊙O上,∴OQ⊥OP.又∵BP=OB=OQ=2,∴PQ=2,即PQ=2;(2)OQ⊥AC.理由如下:如图②,连接BC.∵BP=OB,∴点B是OP的中点,又∵PC=CQ,∴点C是PQ的中点,∴BC是△PQO的中位线,∴BC∥OQ.又∵AB是直径,∴∠ACB=90°,即BC⊥AC,∴OQ⊥AC.(3)如图②,PC•PQ=PB•PA,即0.5PQ2=2×6,解得PQ=2.LISTNUMOutlineDefault\l3(1)证明:连接OD,∵OC=OD,∴∠C=∠ODC,∵OC⊥AB,∴∠COF=90°,∴∠OCD+∠CFO=90°,∵GE为⊙O的切线,∴∠ODC+∠EDF=90°,∵∠EFD=∠CFO,∴∠EFD=∠EDF,∴EF=ED.(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汽车质押借款协议样本一
- 酒店单层租赁合同模板
- 转租服务合同模板
- 设计古建纸合同模板
- 大厦出售转让合同模板
- 公司买房购房合同模板
- 雇保姆合同模板
- 夫妻双方转让土地合同模板
- 冷库维护保养合同模板
- 大班科学活动教案《工具用处大》
- 2024中煤电力限公司面向中煤集团内部招聘15人高频难、易错点500题模拟试题附带答案详解
- 统编版(2024新版)七年级上册历史第二单元 夏商周时期:奴隶制王朝的更替和向封建社会的过渡 单元复习课件
- 安徽省江南十校2025届高一数学第一学期期末经典试题含解析
- 3.2 世界的地形(教学设计)七年级地理上册同步高效备课课件(人教版2024)
- 2024南京航空航天大学科学技术研究院招聘历年高频500题难、易错点模拟试题附带答案详解
- 2024上海烟草集团北京卷烟厂限公司招聘31人高频500题难、易错点模拟试题附带答案详解
- 2024年上半年教师资格证《初中音乐》真题及答案
- 2024-2030年中国合成革行业发展分析及发展趋势预测与投资风险研究报告
- 2024年部编版初中明德教育集团七年级期中考试(学生版)
- 2024信息技术中考练习系统试题及答案
- 高考日语 核心考点总结
评论
0/150
提交评论