



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
线面角的求法总结一.直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。例1(如图1)四面体ABCS中,SA,SB,SC两两垂直,∠SBA=45°,∠SBC=60°,M为AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的角。解:(1)∵SC⊥SB,SC⊥SA,图1∴SC⊥平面SAB故SB是斜线BC在平面SAB上的射影,∴∠SBC是直线BC与平面SAB所成的角为60°。(2)连结SM,CM,则SM⊥AB,又∵SC⊥AB,∴AB⊥平面SCM,∴面ABC⊥面SCM过S作SH⊥CM于H,则SH⊥平面ABC∴CH即为SC在面ABC内的射影。∠SCH为SC与平面ABC所成的角。sin∠SCH=SH/SC∴SC与平面ABC所成的角的正弦值为√7/7(“垂线”是相对的,SC是面SAB的垂线,又是面ABC的斜线.作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。)二利用公式sinθ=h/ι其中θ是斜线与平面所成的角,h是垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。例2(如图2)长方体ABCD-A1B1C1D1,AB=3,BC=2,A1A=4,求AB与面AB1C1D所成的角。解:设点B到AB1C1D的距离为h,∵VB﹣AB1C1=VA﹣BB1C1∴1/3S△AB1C1·h=1/3S△BB1C1·AB,易得h=12/5设AB与面AB1C1D所成的角为θ,则sinθ=h/AB=4/5图2∴AB与面AB1C1D所成的角为arcsin4/5三.利用公式cosθ=cosθ1·cosθ2(如图3)若OA为平面的一条斜线,O为斜足,OB为OA在面α内的射影,OC为面α内的一条直线,其中θ为OA与OC所成的角,图3θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cosθ=cosθ1·cosθ2(同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)例3(如图4)已知直线OA,OB,OC两两所成的角为60°,,求直线OA与面OBC所成的角的余弦值。解:∵∠AOB=∠AOC∴OA在面OBC内的射影在∠BOC的平分线OD上,则∠AOD即为OA与面OBC所成的角,可知∠DOC=30°,cos∠AOC=cos∠AOD·cos∠DOC∴cos60°=cos∠AOD·cos30°∴cos∠AOD=√3/3∴OA与面OBC所成的角的余弦值为√3/3。图4一.课题:直线和平面所成的角与二面角(1)——线面角二.教学目标:1.掌握直线和平面所成角的概念;2.理解并且掌握公式:。三.教学重点、难点:直线和平面所成角的概念及的应用。四.教学过程:(一)复习:1.直线和平面的位置关系;(平行、相交和直线在平面内)2.思考:当直线与平面的关系是时,如何反映直线与平面的相对位置关系呢?(可以用实物来演示,显然不能用直线和平面的距离来衡量)(二)新课讲解:1.平面的斜线和平面所成的角:已知,如图,是平面的斜线,是斜足,垂直于平面,为垂足,则直线是斜线在平面内的射影。设是平面内的任意一条直线,且,垂足为,又设与所成角为,与所成角为,与所成角为,则易知:,又∵,可以得到:,注意:(若,则由三垂线定理可知,,即;与“是平面内的任意一条直线,且,垂足为”不相符)。易得:又即可得:.则可以得到:(1)平面的斜线和它在平面内的射影所成角,是这条斜线和这个平面内的任一条直线所成角中最小的角;(2)斜线和平面所成角:一个平面的斜线和它在这个平面中的射影的夹角,叫做斜线和平面所成角(或叫斜线和平面的夹角)。说明:1.若,则规定与所成的角是直角;2.若或,则规定与所成的角为;3.直线和平面所成角的范围为:;4.直线和平面所成角是直斜线与该平面内直线所成角的最小值()。2.例题分析:例1.如图,已知是平面的一条斜线,为斜足,为垂足,为内的一条直线,,求斜线和平面所成角。解:∵,由斜线和平面所成角的定义可知,为和所成角,又∵,∴,∴,即斜线和平面所成角为.例2.如图,在正方体中,求面对角线与对角面所成的角。〖解〗(法一)连结与交于,连结,∵,,∴平面,∴是与对角面所成的角,在中,,∴.(法二)由法一得是与对角面所成的角,又∵,,∴,∴.说明:求直线与平面所成角的一般方法是先找斜线在平面中的射影,后求斜线与其射影的夹角。另外,在条件允许的情况下,用公式求线面角显得更加方便。例3.已知空间四边形的各边及对角线相等,求与平面所成角的余弦值。解:过作平面于点,连接,∵,∴是正三角形的外心,设四面体的边长为,则,∵,∴即为与平面所成角,.五.课堂练习:课本第45页练习第1,2,3题;第47页习题9.7的第1题。六.小结:1.线面角的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中英语 Unit2 Growing pains Section Ⅲ Grammar教学设计 牛津译林版必修1
- Unit 6 Section A 2a - 2d 教学设计 2024-2025学年人教版八年级英语上册
- 1《 感受生活中的法律》(教学设计)-部编版道德与法治六年级上册
- 2024年九年级语文上册 第二单元 第8课《论教养》教学设计 新人教版
- 基于时尚风格的毕业设计学术答辩模板
- 水利监理规范解读
- Unit4《Bobbys House》lesson4(教学设计)-2024-2025学年北师大版(三起)英语四年级上册
- 线上推广引流培训
- 小学教学管理观摩材料
- 2024秋七年级数学上册 第3章 代数式3.6 整式的加减 1整式的加减教学设计(新版)苏科版
- 圆锥角膜的护理查房
- 2024届湖南省高三质量调研物理试卷(三)(解析版)
- ISO28000:2022供应链安全管理体系
- 泌尿外科静脉血栓栓塞症的风险评估与预防
- 2024年K12课外辅导市场洞察报告
- 设备搬运合同的模板
- 2024年浪潮入职测评题和答案
- 跨国公司的国际营销策略浅析-以联合利华为例
- 《肌力训练》课件
- 全媒体运营师-国家职业标准(2023年版)
- 针灸治疗呃逆
评论
0/150
提交评论