河北省唐山市玉田县高级中学2023学年高三下学期第一次联考数学试卷(含答案解析)_第1页
河北省唐山市玉田县高级中学2023学年高三下学期第一次联考数学试卷(含答案解析)_第2页
河北省唐山市玉田县高级中学2023学年高三下学期第一次联考数学试卷(含答案解析)_第3页
河北省唐山市玉田县高级中学2023学年高三下学期第一次联考数学试卷(含答案解析)_第4页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变2.已知的面积是,,,则()A.5 B.或1 C.5或1 D.3.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是()A. B. C. D.4.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.365.设,满足约束条件,若的最大值为,则的展开式中项的系数为()A.60 B.80 C.90 D.1206.若向量,则()A.30 B.31 C.32 D.337.定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是()A. B. C. D.8.已知双曲线的一条渐近线方程为,则双曲线的离心率为()A. B. C. D.9.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为()A. B. C. D.10.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是()A. B. C. D.11.设,随机变量的分布列是01则当在内增大时,()A.减小,减小 B.减小,增大C.增大,减小 D.增大,增大12.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动.已知某种盆栽植物每株成活的概率为,各株是否成活相互独立.该学校的某班随机领养了此种盆栽植物10株,设为其中成活的株数,若的方差,,则________.14.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.15.的展开式中的常数项为__________.16.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.18.(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值19.(12分)已知,均为正数,且.证明:(1);(2).20.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.21.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值.22.(10分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】

由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【题目详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【答案点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题2.B【答案解析】∵,,∴①若为钝角,则,由余弦定理得,解得;②若为锐角,则,同理得.故选B.3.D【答案解析】

因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得.【题目详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:,即,由得.故选:.【答案点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.4.D【答案解析】

由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【题目详解】由题,.故选:D【答案点睛】本题考查等差数列的性质,考查等差数列的前项和.5.B【答案解析】

画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【题目详解】如图所示:画出可行域和目标函数,,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到项的系数为:.故选:.【答案点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.6.C【答案解析】

先求出,再与相乘即可求出答案.【题目详解】因为,所以.故选:C.【答案点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.7.B【答案解析】

结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可.【题目详解】结合题意可知为偶函数,且在单调递减,故可以转换为对应于恒成立,即即对恒成立即对恒成立令,则上递增,在上递减,所以令,在上递减所以.故,故选B.【答案点睛】本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.8.B【答案解析】

由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【题目详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【答案点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.9.B【答案解析】

计算求半径为,再计算球体积和圆锥体积,计算得到答案.【题目详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【答案点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.10.C【答案解析】

直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值.【题目详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,∴,点B的横坐标为,∴点B的坐标为,把代入直线,解得,故选:C.【答案点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.11.C【答案解析】

,,判断其在内的单调性即可.【题目详解】解:根据题意在内递增,,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C.【答案点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题.12.B【答案解析】

首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【题目详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【答案点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

由题意可知:,且,从而可得值.【题目详解】由题意可知:∴,即,∴故答案为:【答案点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题.14.1.【答案解析】

先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【题目详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【答案点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.15.31【答案解析】

由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为:,得解.【题目详解】解:,则的展开式中的常数项为:.故答案为:31.【答案点睛】本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.16.【答案解析】

建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【题目详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,,则,则,当时,,则单调递减,当时,,则单调递增,所以当时,最短,此时.故答案为:【答案点睛】本题考查导数的实际应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.【答案解析】

先将曲线C和直线l的极坐标方程化为直角坐标方程,可得圆心到直线的距离,再由勾股定理,计算即得.【题目详解】以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,可得曲线C:()的直角坐标方程为,表示以原点为圆心,半径为r的圆.由直线l的方程,化简得,则直线l的直角坐标方程方程为.记圆心到直线l的距离为d,则,又,即,所以.【答案点睛】本题考查曲线和直线的极坐标方程化为直角坐标方程,是基础题.18.(1)证明见解析;(2)存在,.【答案解析】

(1)根据题意证出,,再由线面垂直的判定定理即可证出.(2)连接AC交DM于点Q,连接EQ,利用线面平行的性质定理可得,从而可得,在正方形ABCD中,由即可求解.【题目详解】(1)证明:在正方形ABCD中,M,N分别是AB,AD的中点,∴,,.∴.∴.又,∴,∴.∵为等边三角形,N是AD的中点,∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如图,连接AC交DM于点Q,连接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在点E,使平面DEM,此时,E是棱A的靠近点A的三等分点.【答案点睛】本题考查了线面垂直的判定定理、线面平行的性质定理,考查了学生的推理能力以及空间想象能力,属于空间几何中的基础题.19.(1)见解析(2)见解析【答案解析】

(1)由进行变换,得到,两边开方并化简,证得不等式成立.(2)将化为,然后利用基本不等式,证得不等式成立.【题目详解】(1),两边加上得,即,当且仅当时取等号,∴.(2).当且仅当时取等号.【答案点睛】本小题主要考查利用基本不等式证明不等式成立,考查化归与转化的数学思想方法,属于中档题.20.(1),(2)【答案解析】

(1)利用向量的数量积和二倍角公式化简得,故可求其周期与单调性;(2)根据图像过得到,故可求得的大小,再根据数量积得到的乘积,最后结合余弦定理和构建关于的方程即可.【题目详解】(1),最小正周期:,由得,所以的单调递增区间为;(2)由可得:,所以.又因为成等差数列,所以而,.21.(1)曲线的直角坐标方程为,曲线的参数方程为为参数(2)【答案解析】

(1)将代入,可得,所以曲线的直角坐标方程为.由可得,将,代入上式,可得,整理可得,所以曲线的参数方程为为参数.(2)由题可设,,,所以,,,所以,因为,所以,所以当,即时,l取得最大值为,所以的周长的最大值为.22.(1)(2)或【答案解析】

(1)由已知条件得到方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论