深圳市龙岗区2022年高一数学第一学期期末预测试题含解析_第1页
深圳市龙岗区2022年高一数学第一学期期末预测试题含解析_第2页
深圳市龙岗区2022年高一数学第一学期期末预测试题含解析_第3页
深圳市龙岗区2022年高一数学第一学期期末预测试题含解析_第4页
深圳市龙岗区2022年高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.2.设函数,若,则A. B.C. D.3.已知函数的部分图象如图所示,则下列说法正确的是()A.该图象对应的函数解析式为B.函数的图象关于直线对称C.函数的图象关于点对称D.函数在区间上单调递减4.下列说法中正确的是()A.如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B.平面内的三个顶点到平面的距离相等,则与平行C.,,则D.,,,则5.已知扇形的圆心角为,面积为8,则该扇形的周长为()A.12 B.10C. D.6.垂直于直线且与圆相切的直线的方程是AB.C.D.7.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b其中真命题的序号是()A.①② B.③C.①③ D.②8.已知关于的方程的两个实数根分别是、,若,则的取值范围为()A. B.C. D.9.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形10.为了鼓励大家节约用水,北京市居民用水实行阶梯水价,其中每户的户年用水量与水价的关系如下表所示:分档户年用水量(立方米)水价(元/立方米)第一阶梯0-180(含)5第二阶梯181-260(含)7第三阶梯260以上9假设居住在北京的某户家庭2021年的年用水量为200m3,则该户家庭A.1800元 B.1400元C.1040元 D.1000元11.“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件12.已知关于的不等式的解集是,则的值是()A. B.2C.22 D.二、填空题(本大题共4小题,共20分)13.不等式的解集为_________________.14.下列四个命题中:①若奇函数在上单调递减,则它在上单调递增②若偶函数在上单调递减,则它在上单调递增;③若函数为奇函数,那么函数的图象关于点中心对称;④若函数为偶函数,那么函数的图象关于直线轴对称;正确的命题的序号是___________.15.已知函数,,若对任意的,都存在,使得,则实数的取值范围为_________.16.已知函数的图像恒过定点A,若点A在一次函数的图像上,其中,则的最小值是__________三、解答题(本大题共6小题,共70分)17.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值18.已知角的终边经过点,,,求的值.19.已知四棱锥的底面是菱形,,又平面,点是棱的中点,在棱上.(1)证明:平面平面.(2)试探究在棱何处时使得平面.20.求值:(1);(2)21.已知A(1,1)和圆C:(x+2)2+(y﹣2)2=1,一束光线从A发出,经x轴反射后到达圆C(1)求光线所走过的最短路径长;(2)若P为圆C上任意一点,求x2+y2﹣2x﹣4y的最大值和最小值22.已知的数(1)有解时,求实数的取值范围;(2)当时,总有,求定的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误2、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质3、B【解析】先依据图像求得函数的解析式,再去代入验证对称轴、对称中心、单调区间的说法.【详解】由图象可知,即,所以,又,可得,又因为所以,所以,故A错误;当时,.故B正确;当时,,故C错误;当时,则,函数不单调递减.故D错误故选:B4、D【解析】根据线面关系,逐一判断每个选项即可.【详解】解:对于A选项,如果一条直线与一个平面平行,那么这条直线与平面内无数条直线平行,而不是任意的直线平行,故错误;对于B选项,如图,,,,分别为正方体中所在棱的中点,平面设为平面,易知正方体的三个顶点,,到平面的距离相等,但所在平面与相交,故错误;对于选项C,可能在平面内,故错误;对于选项D,正确.故选:D.5、A【解析】利用已知条件求出扇形的半径,即可得解周长【详解】解:设扇形的半径r,扇形OAB的圆心角为4弧度,弧长为:4r,其面积为8,可得4r×r=8,解得r=2扇形的周长:2+2+8=12故选:A6、B【解析】设所求直线方程为3x+y+c=0,则d=,解得d=±10.所以所求直线方程为3x+y+10=0或3x+y-10=0.7、D【解析】因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;故选D8、D【解析】利用韦达定理结合对数的运算性质可求得的值,再由可求得实数的取值范围.【详解】由题意,知,因为,所以.又有两个实根、,所以,解得.故选:D.9、B【解析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B10、C【解析】结合阶梯水价直接求解即可.【详解】由表可知,当用水量为180m3时,水费为当水价在第二阶段时,超出20m3,水费为则年用水量为200m3,水价为故选:C11、A【解析】利用充分条件和必要条件的定义分析判断即可【详解】当时,,当时,或,所以“”是“”的充分非必要条件,故选:A12、C【解析】转化为一元二次方程两根问题,用韦达定理求出,进而求出答案.【详解】由题意得:2与3是方程的两个根,故,,所以.故选:C二、填空题(本大题共4小题,共20分)13、或.【解析】利用一元二次不等式的求解方法进行求解.【详解】因为,所以,所以或,所以不等式的解集为或.故答案为:或.14、②③【解析】根据奇函数、偶函数的性质可判断①②,结合平移变换可判断③④.【详解】奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性,故①错误,②正确;因为函数为奇函数,图象关于原点对称,的图象可以由的图象向右平移1个单位长度得到,故的图象关于点对称,故③正确;函数的图象可以由函数的图象向左平移1个单位长度得到,因为为偶函数,图象关于y轴对称,所以的图象关于直线轴对称,故④错误.故答案为:②③15、##a≤【解析】时,,原问题.【详解】∵,,∴,∴,即对任意的,都存在,使恒成立,∴有.当时,显然不等式恒成立;当时,,解得;当时,,此时不成立.综上,.故答案为:.16、8【解析】可得定点,代入一次函数得,利用展开由基本不等式求解.【详解】由可得当时,,故,点A在一次函数的图像上,,即,,,当且仅当,即时等号成立,故的最小值是8.故答案为:8.【点睛】本题考查基本不等式的应用,解题的关键是得出定点A,代入一次函数得出,利用“1”的妙用求解.三、解答题(本大题共6小题,共70分)17、(1);(2);(3)见解析【解析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最小值为,最大值为【点睛】本题考查了对数函数的相关性质,考查了对数的运算、对数函数的单调性以及最值,考查函数方程思想以及化归与转化思想,体现了基础性与综合性,提高了学生的逻辑推理能力18、.【解析】利用三角函数的定义可得,进而可求,利用同角关系式可求,再利用两角和的正切公式即得.【详解】∵角的终边经过点,∴,,∵,,∴,,∴19、(1)证明见解析;(2)当时,平面【解析】(1)证明:,又底面是的菱形,且点是棱的中点,所以,又,所以平面.平面平面.(2)解:当时,平面,证明如下:连接交于,连接.因为底面是菱形,且点是棱的中点,所以∽且,又,所以,平面.20、(1)(2)【解析】(1)利用指数幂计算公式化简求值;(2)利用对数计算公式换件求值.【小问1详解】【小问2详解】.21、(1);(2)最大值为11,最小值为﹣1【解析】(1)点关于x轴的对称点在反射光线上,当反射光线从点经轴反射到圆周的路程最短,最短为;(2)将式子化简得到,转化为点点距,进而转化为圆心到的距离,加减半径,即可求得最值.【详解】(1)关于x轴的对称点为,由圆C:(x+2)2+(y﹣2)2=1得圆心坐标为C(﹣2,2),∴,即光线所走过的最短路径长为;(2)x2+y2﹣2x﹣4y=(x﹣1)2+(y﹣2)2﹣5(x﹣1)2+(y﹣2)2表示圆C上一点P(x,y)到点(1,2)的距离的平方,由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论