




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十六章偏导数与全微§1导数与全微分的(1)ux2ln(x2y2)u(xy)uarctanyxuxyxyuxyesin(xy)uxyyxu
x解
2xln(
y)
x2y
y)
x2y2]u
2x2
2x2.x2y2ucos(xyxy)(sinxyycos(xyy(xysinxyxyycos(xyx(xysinxyu 1
(y)x
(y)x
;x2y
u
1(y)x
1 x2y
uy1 uxx uyesin(xy)xyesin(xy)cos(xyyy(1xycos(xy))esin(xy)xyyx(1xy
sin(xy)uyxy1yxlny
yxlnx 设
f(x,f(x,y)
1x2y
,x2y20,x2y2函数在(0,0
xf
f(x,0)f
0
0,即fx(0,00,而
yf
f(0,y)f
lim
不存在,
fy(0,0x2yx2y证明函数u x2yx2y(x)2(x)2lim lim
x0x2y不存在,由对称性limyu(0,0)不存在,因而ux2y x2y2x2y2zuxeyzexyx2y2x2y2z2x2y2z
d(x2y2z2x2y2zx2y2zx2y2x2y2z2x2y2z2
dy
dzx2y2z2dud(xeyzexy)eyzdxxeyz(zdyydz)x2y2z2(eyzex)dx(xzeyz1)dyxyeyzdzx2x2y
在点(1,0和(0,1(2)uln(xy2在点(0,1和(1,1xzyu xzyxyux(y1)xy
在点(0,1x2yx2y
)
d(x2y2x2yx2yx2y2(x2y2x2
y2dx(x2y2((x2y2(x2y2)x2所以,在点(1,0du0,在点(0,1dudx
xy
(dx2ydy)
xy
dx
2yxy2
dy(0,1,dudx2dy在点(1,1du1dxdy1(1) x(1) 1(yzy2zz
1)z
xy x1
x1
x du
()yz
dx
y2
()y
dyz
()zy
dzy函数的定义域为{(x,y0xyor0yx}x0dudx
xdy(y1 ydx1 ydx1 y xy2xy2xyx2
(y1)sgn
)dx
x(1y)sgn
2yxy2yxyx2x0
f(x,y)f(0,y)lim(1
y
x
x在(0,y
(0,y
(0,y)
f(0,yy)f(0,y)lim
0 y0xy但在点(0,ydu不存在,因而uxy1xy
在点(0,1)不可微f(x,y在(0,0f(x,f(x,y)0
x2y
,x2y20x2y20解
xf
f(x,0)f
0
0fx(0,0)0fy(0,0)0f(xy在(0,0fxy
f
xf
y1x1x2x2y
更高阶的无穷小,为此极
x2y
xx2y
1,x2y x2y
x2y
1(x2y2xx2xx2yx2y
0f(xy在(0,0
x2 f(x,y)x2y2,
x在(0,0
y2x2xx2x2y
x
x,所limf(xy0x2yx2y12
f(0,0),即f(x,y在点(0,0
xf
f(x,0)f
0limyf(0,0)
f(0,y)f(0,0)0 fx(0,0)fy(0,0)0f(x,y在(0,0f(x,y)f(0,0)[fx(0,0)x
x2fy(0,0)y](x)2(y)x2x2y
更高阶的无穷小量,为此极lim
(,(x0x2
x2y2
令yx(xy沿直线yx趋于(0,0
(x2(x2y2(
x2
f(xy在(0,0
f(x,y)
y
) x2y
x2y200
x2y2的偏导数存在,但偏导数在(0,0)点不连续,且在(0,0)点的任何邻域中,而f在原
证
yf(x,y)2y(sinx2y2x2y2cosx2y2),xy
0,
x2y20,而limfx(x,y不存在,limfy(x,yfx(x,y),fy(x,y在(0,011
10,M0,1
且
MPn
,0)(P,)11
(P,1fx(Pn)fx1f(P)f
,0)1)1
MM 所以,fx(x,y),fy(x,y)在(0,0)点的任何邻域中均
f(x,y)f(0,0)[fx(0,0)x
fy(x)(x)2
(x)2
0((x
0,()),f(xy在(0,0可微,且在(0,0df(0,0)0设
2xy f(x,y)x2y2 x
0 证
在(0,0
0
x2y20 2xy 证明f(x2y22,
x y22xyy 2xy22x2y
x2y2
y
0
fx(0,0
fx(x,y在(0,0
亦在(0,0设
1ex(x2y2
,x2y20f(x,y)x2y0f(xy在点(0,0df(0,0
x2y2x证 f(0,0)x
1
x3o(x3
1,f(0,0)lim00yyf(x,y)f(0,0)[fx(0,0)xfy11ex(x2y2
1x(x2y2)ex(x2y2 xx2y
3(x2y2)1x2(x2y2)2(x2(x2y2 3(x2y2) x2(x2y2)2(x2(x2y2)2)0((x,y)(0,0))2f(xy在(0,0df(0,0xdx设
f(x,y)x2y2,x
0
x2y2xx(t),yy(t是通过原点的任意可微曲线(x20y20)0t0x2ty2t)0,x(t),y(t可微f(x(t),y(tf(x,y在(0,0
x3
,t0,证明(1)设(t)
f(x(t),y(t))
(t)
t
(t)
x2(t)[x2(t)x(t)3y2(t)x(t)2x(t)y(t)y(t)][x2(t)y2(t)]2
,t0而在t
t
(t)(0)t
t0t(x
x3(t)y
0 t
(x(t))2(y(t))
[x(0)]2[
0
x3t(x3(t)y2x3t(x3(t)y2t
x3
t
t0
(t)
,即
0f(x(t),y(tf
(0,0)
f(x,0)f(0,0)f(0,y)fyf(0,0)y
0f(x,y在(0,0f(x,y)f(0,0)(fx(0,0)xfy x2
x
,x2x2x2y
更高阶的无穷小,为此极lim1
)
xy,设
y033
3
(2x2)
22该极限不存在,因而
xy )不是 更高阶的无穷小量,因此f(x,y)
x,y(1)(1x)m(1y)nx 1 解(1)f(x,y)m(1x)m11y)nf(x,y)n(1x)m(1y)n1 fx(0,0)m,fy(0,0)n (1x)m(1y)nf(0,0)f(0,0)xf(0,0)y()1mxny x,y(1x)m(1y)n1mxny
x2y2)fx(x,y)
1
xy
1y(1
1y (1xy)2(xy)211xfy(x,y)(1xy)2(xy)2f
(0,0)1
f(0,0)f(0,0arctan00,故arctanx 1
xy(),x,yarctanx1
xyuf(xyaxbcyd内可微,且全微分du恒为零,问f(x,y f(x,y)在该矩形内应取常数值.证明如下由于uf(x,y在矩形内可微,故(x,ya,bcddu
fx(x,y)dxfy(x,y)dy0
fx(x,y)0,fy(x,y)0P0x0y0f(x,y)f(x0,y0)[f(x,y)f(x0,y)][f(x0,y)f(x0,y0fx(x01(xx0),y)(xx0)fy(x0,y02(yy0)(yy0 (011,021)f(xy)
f(x0y0)Cf(x,y取常数值C
f(x0,y0)设
在
,
在
,
f(x,y在
,
证 f(x0x,y0y)f(x0,y0f(x0x,y0y)f(x0x,y0)f(x0x,y0)f(x0,y0)y在(x0y0P0(x0y0Lagrange01f(x0x,y0y)f(x0x,y0)fy(x0x,y0y)yf在
,
fy
x,
y)f
,
fy(x0x,y0y)
fy(x0y0lim0x而对f(x0xy0f(x0y0,设(xf(xy0f(x0x,y0)f(x0,y0)(x0x)(x0),由于(x0)fx(x0,y0,故(xx0f(x0x,y0)f(x0,y0)(x0x)(x0(x0)x其中o(xx0
fx(x0,y0)xf(x0x,y0y)f(x0,y0)fy(x0,y0)yfx(x0,y0)xyy
0(0f(x,y在(x0,y0x2y(1)x2y(2)uxyyxuxsin(xy)ycos(xy)uexy解u1ln(x2y2),u
,由对称性
2x2
x2
x2y2ux
y2x(x2y2)2
(x2y2)
(x2y2)2
2u
x2y2(x2y2)2(2)uyy,ux1 x 2
2u
1 x
0usin(xy)xcos(xy)ysin(xy)yxcos(xy)cos(xy)ysin(xy)
2cos(xy)xsin(xy)ycos(xy)cos(xy)xsin(xy)sin(xy)ycos(x
cos(x
xsin(x
y)
y)
ycos(x
y)y)2u
xsin(x
y)
2sin(x
y)
ycos(x
y)
2
2u
y
xye2u
x2exyu
siny
sinx
;x3yxu 1u
y
),求
x3
;yu
xyz
pqr;xryqzu
xyx
(xy
;xmynuln(axby
.xmyn解
u
3x
sinyy
cosx
6xsiny
sinx
6sinyy
cosx,
6cosy
cosxx3y
6siny
6ycosx,
6cosy6cosx
u
xy
1y
1y(1xy)2(x
1x1 1xyu
1y
,x
,
2(1y2
,
03u2(3x2
3u2(3y2
3u
,
00
u
2xcos(x
y2
2
)
y2)
12xsin(
)
y2)
y
)8y
cos(x
y2)(4)uyzexyzxyzexyz(x1)yzexyz
xy
(x1)
xy
(x2)
xyz
(xp)
xyzxp
(x
xy
(xp)
xy
(xp)(y
xyz
pquxp
(xp)(y
xyzxpyq
(xp)(y
xy
(xp)(y
xy(xp)(yq)(z1)exyz
pqrxpyqz
(xp)(yq)(z
xyzu 2 mu2(1)mm!
(x
m1u
(xm
(使用数学归纳法x
m!(xy)m2m2xmy
m!(m1)(2xmy)(xy)xmy
m!(m1)(m2)(3xmy)(x
(mn
nx.xmyn
(xy)x(ba)(6)xx(ba)
(a0)xmu(1)m1(m1)!(1)m1(m1)!am(1)m1(m1)!a
(xa
(ax
bm(y
ab
xmyn
(1)m1(m1)!amm(m1)(mnbm(yab(1)mn1(mn.(ax
2u2ux y 0(1)uln(x2y2)(2)ux2y2uexcosyuarctanyx
2u2(y2x2
2u2(x2y2
2u2u1(1
x
(x
22y2 22
(x2
)2
x
y 0u u 2x 2 2y
所 0
x
y
2ux2u2u
cosy,x2
cosy,y
sinyy ecosy
0u
2u
1
yx
)x x2y
,
(x2y2)2u 1
2u
1
y)2x
x2y2,
(x2y2)22u2u
0设函数u(xyu
u.x yx证明u(xyu(xy)) 2u(x u 2
(y)),
(
(y)u
(x
xu2u
(
(
(y)yx
(
(
(y))u即
u.x yx19.fx,fy在点(x0y0的某邻域内存在且在点(x0,y0fxy(x0,y0)fyx(x0,y0)证明16.4fxy(x0,y0fyx(x0,y0
f(x0x,y0y)f(x0,y0y)f(x0x,y0)f(x0,y0f,f在(x
处的可微性,下面证明
f(x
)
f(x,
)
x
51
61二者对充分小的xy同时成立,且当x0y0i0i16011.于是令xy0 (*(**)(y)f(x0x,y)f(x0,y)W式11
W
y)(
)]
1[
x,
y)f
(x0,
y)]
0
1fy在(x0y0fy(x0x,y0y)
fy(x0,y0)fyx(x0,y0)xfyy(x0,y01x2y其中1,20(当xy0时fy(x0,y0y)fy(x0,y0)fyy(x0,y0)y3y其中30(当y0时W
1{
x,
y)f
,
1{
,y0)
f
,
)x
f
,
)y1x
f(x,
)
fy(x0,y0)fyy(x0,y0)yyy
这正是(*)式.同样,令(xf(x,y0yf(x,y0W
x)
1
1y{fx(x01x,y0y)fx(x01x,y0)}1
011fx在(x0y0fx(x01x,y0y)
fx(x0,y0)fxx(x0,y0)1xfxy(x0,y041x5y其中4,50(当xy0时fx(x01x,y0)fx(x0,y0)fxx(x0,y0)1x61xW
1{
1x,
y)f
1x,y01{f(x,
)
(x,y)x
(x,
)yx
4 fx(x0,y0)fxx(x0,y0)1x fxy(x0y041y561y,§2合函数与隐函数微分(1)u
f(ax,by)(2)uf(xy,xy)(3)uf(xy2,x2y)(4)u
f(xy
y)z(5)uf(x2y2z2);(6)u
f(xy,
x)y解(1)uf(axbyaaf(axbyu
(ax,by)b
(ax,by) 2u
(ax,by)
af11(ax,
2u
abf21(ax,by),
f22(ax,by)(2)u
f1(xy,xy)f
(xy,xy)yf1(xy,xy)f2(xy,xy)
(xy,xy)
(xy,xy)f
(xy,xy)f
(xy,xf11(xy,xy)2f12(xy,xy)f22(xy,xy),
(xy,xy)
(xy,xy)
f
(xy,xy)f
(xy,xf11(xy,xy)f22(xy,xy)
(xy,xy)
(xy,xy)f
(xy,xy)f
(xy,xf11(xy,xy)f22(xy,xy)2u
(xy,xy)
(xy,xy)
(xy,xy)
(xy,x2f11(xy,xy)2f12(xy,xy)f22(xy,xy)2(3)uy22 2
(xy2,x2y)
(xy2,x2y)u2xyf(xy
,x
y)x
f2
,x
y);2u
y2[y
f11
,x
y)2xyf12
,x
y)]2yf2
,x2 2222xy[y2f(xy2,x2y)2xyf(xy2,x2 222 2222y4f(xy2,x2y)4xy3f(xy2,x2y)4x2y2f(xy2,x2y)2yf(xy2,x 2222
2yf1
,x
y)
[2xyf11
,x
y)x
f12
,x
2xf2(xy2,x2y)2xy[2xyf21(xy2,x2y)x2f22(xy2,x2 2xy3f(xy2,x2y)5x2y2f(xy2,xy)2x3yf(xy2, 2yf(xy2,x2y)2xf(xy2,x2y)
2yf1
2,x2
y)2xy[y
2f112
,x
y)2xyf12
2,x2
2xf(xy2,x2y)x2[y2f(xy2,x2y)2xyf(xy2,x 2xy3f(xy2,x2y)5x2y2f(xy2,xy)2x3yf(xy2, 2yf(xy2,x2y)2xf(xy2,x2y) 2u
2xf1
2,x2
y)2xy[2xyf11
2,x2
x
f12
2,x2
x2[2xyf(xy2,x2y)x2f(xy2,x2 4x2y2
(xy2,x2y)4x3
(xy2,x2y)x4
(xy2,x2y)2xf(xy2,x2y).1 x 1
x x
x(4)x
f ) y
)y
f2 ) y z
f2 )y2ux y
f11(y
y)z
x
f ) y y
f11 )
f12 zy
f1(y
y)
f11(y
y)
f12(y
y)z2u x
x y y
y(2)f12 )
f12 )y2u
x
1 x
f ) y y
f11 )
yy2u
f1(yx
y) y2x2
f11(yx
y)zx
yzf121
x,y)yx
y3f1(y,z)
[y
f11(y,z)
f12(y,z1[x
f21(y
y)
f22(y
yz 3f1
y)
f11
y)
2f12 2
y)
2f22 2
y)24 y 242u x
y y
y yx x
f ) ) )f )y y y
) y x
f12(y
y)
f2(y
y)
f22(y
y)z2u
y
y x
z
z
f12 )z y
x
x x
z2f2(y
) z
f21(y,z)
f22(y,zz2
f2(y
y)z
f12(y
y)
f22(y
y)z2u2 x x
x y x
z3f2(y,z)z
f22(y
)
)y
f2(y,z)z
f22(y,z)2u2xf(x2y2z22
2yf(x
u2zf(x2y2z2),,
2
(x
y
z
)4x
f(x
y
z2),
2u
4xyf(x
z),xzzx4xzf(x
z) 2
(x
y
z
)4y
f(x
y
z2)
4
(x
y
z2)
2
(x
y
z
)4zx
f(x
y
z2) (6)xf1(xy,xy,y)yf2(xy,xy,y)yf3(xy,xy,y)
yf1(xy,xy,y)xf2(xy,xy,y)y2f3(xy,xy,y)2u
f11(xy,xy,y)yf129xy,xy,y)
f13(xy,xy,yy[
(xy,xy,x)
(xy,xy,x)1
(x
y
y, y1[
(xy,xy,x)
(xy,xy,x)1
(x
y
y, yf(xy,xy,x)2
(xy,xy,x)2
(x
y
y, yy2
(xy,xy,x)2
(xy,xy,x)
(x
xy, )y
2u
f11(xy,xy,y)xf12(xy,xy,y)y
f13(xy,xy,yf
(xy,xy,x)y[
(xy,xy,x)
(x
y, yx
(x y
y,xy,y)](y2)f3(xy,xy,y)y[f31(xy,xy,y
(xy,xy,x) y
(x
y, yf
(x
y, )xyx
f3(x
y, y
(x
y, y(xy)
(x y(x
(x y
y, y xyf22(xy,xy,y)y3f33(xy,xy,y)2u
f11(xy,xy,y)xf12(xy,xy,y)y
f13(xy,xy,yx[
(x
xy, y
(x
y, )xyx
(x
xy, y2xf(x y3
y,xy,y)y2[f31(xy,xy,y)xf32(xy,xy,yxy
(x
y, y2xf(x y3
y,xy,y)f11(xy,xy,y)2xf12(xy,xy,yy
f(xy,xy,x)x
f(xy,xy,x)
2xy
f(x y,xy,f(xxy
f(x y,f(x (f对各自变量的二阶混合偏导数与求导次序无关z
f(x2y2
f1zx
1zzy y证 z
f2(x2y2
f(x
y
)2x
2xyf(x2y2,f2(x2y2z
f2(x2y2
f(x2y2)(2y)
f(x2y22y2f(x2y2)f2(x2y2
f(x2y2)1z1z2yf(x2y2)2yf(x2y2) x y f2(x2y2 f2(x2y2 yf(x2y2 y2f(x2y2 yx2y2z设v1g(tr),c为常数,函数x2y2z 2v2v2v1
c2t证明v
g(t
r)
1
(t
r) r2x2r2x2y2z
g(tr)1g(tr)(
r3
cx2y2cx2y2zc
g(tr)cr3x3r22v
g(tr)
r2x2rr
g(tr
rxg(tr)r
x)
g(tr)(x 3x2rr
g(t
r)c
3x2r
g(t
r)c
xc2r
g(t
r)c2由函数vxyz22v3y2r
g(t
r)
3y2r
g(t
r)
g(t
r)
r3z2rr
g(t
r)c
3z2r
g(t
r)c
c2rzc2r
g(tr)c2v2v2v3(x2y2z2)3r
r 3(x2y2z2)3r
g(t
r)c
x2y2z
g(trcc2r
g(t
r)
.f(xyztf(tx,ty,tz)tnf(x,y,z),f(xyznf(xyzf(x,y为n
x
y
z
nf(x,y,z)证明f(x,ynf(txtytztnf(xyz对t求导
xf(tx,ty,tz)yf(tx,ty,tz)zf(tx,ty,tz)ntn1f(x,y, 令txtytzf(,,)
f2(,,)
f3(,,)
ft
,,)
t
f(,,)再把x,y,zx
y
z
nf(x,y,z)f(x,yzx
y
z
nf(x,yz(x,y,z),下面的t的函数F(t)
f(tx,ty,tz),(t0)t它在t0时有定义且是可微的,对tF(t)
tn
(tx,ty,tz)yf
(tx,ty,tz)zf
(tx,ty,tz)}
f(tx,ty,t
(tx,ty,tz)tyf
(tx,ty,tz)tzf
(tx,ty,tz)nf(tx,ty,0从而当t0F(tc(与tF(t的等式中令t1,得cF(1)
f(x,y,z)
F(t)
f(tx,ty,tz)f(x,y,z)tf(txty,tztnf(x,yzf(x,yz为n
(1)u
yyxxy0 (2)u
y)yxxyy(3)ux(xyy(xy
2ux
y
0 2
2(4)ux()()
0
解(1)u(x2y22x2x(x2y2u2y(x2y2 yuxu2xy(x2y2)2xy(x2y2)0 (2)u2xy(x2y2u(x2y22y2(x2y2 yuxu2xy2(x2y2)x(x2y2)2xy2(x2y2)xu (3)u(xy)x(xy)y(xy)ux(xy)(xy)y(xy) 2u2(xy)x(xy)y
y)
(xy)x(xy)(x
y)
y(x
y)2ux(xy)2
y) 2
2u(2(xy)x(xy)y
2((xy)x(xy)(xy)y(x(x(xy)2(xy)y(x0
u
y)x(
yx
y)x
y)x
y)x
yx
y)x
yx
y)xu
1y( ( 2u
yx
y)x
yx
y)x
y2x32
y)x
2y
(y)x
y(y2x 2
y)x
2y
y)x
y22
y)x
yx
y)x
1x
y)x
yx3
y)x
1x
y)x
1
y)x xx2
yy2
y2x2
y)x
(y)x
y(y2x 22yx
y)x
2y
(y)x
2y2x
(y)x
y2x2
y)x
y2x2
y)0x设uf(x,yxrcos yrsin
(u)2 r
u(
(u
(u)22u1u1
2u
r r r2
证 rxcosysin x(rsin)y(rcos)xrsinrcosy(u)2
1(u)2
cos
sin)2
1(
rsinrcosf)2 r2 r (f)2cos2(f)2sin22f
sin x(f)2sin22ffsincos(f)2cos2 x (f)2(f)2(u)2(u)2 2ur
2(
cos
2
sin)cos
2
cos
2
sin)2
2
sincos
2
sin2
2[x
(rsin)
2
rcos](rsin)
f(rcos2[
(rsin)
2
rcos]rcos
f(rsin2
r2sin
2
r2sincos
2
r2cos2 xrcosyrsin
2u1u1 r r22
2
sincos
2
sin2
1fr
cos
1fr
2
sin
2
sincos
2
cos2
1fr
cos
1fr
2
2
2u
zf(xyxucosvsin下(其中旋转角是常数
yusinvz
z
(z
(z)2这时称(x
(y
证明uxcosysinvxsinycos(z)2(z)2(fcos
sin)2(fsin
cos)2 f
f
u u(x
(y
(x)(y)设函数uf(xyLaplace2u2ux y 0
0(1)x
s2t
y s2txescost(3)x(s,t)
yessinty(st)满足
,
.这组方程称为u
t2s
u
s2t解
x(s2t2
y(s2t2)2,
x(s2t2
y(s2t2)22u
[
t2
2u
t2]
u2s(s23t2
x2(t2s2
(s2t2
(s2t2
(s2t2[
t2s
u2t(3s2t2yx(t2s2
(s2t2
(s2t2
y(s2t22u(t2s2)2
4st(t2s2)
4s2tx2(t2s2
(s2t2)4
(s2t2)2u2s(s23t2)u2t(3s2t22u
[
(s2t2
(s2t2s2t]
u2s(3t2s2t
x2(s2t2
xy(s2t2
(s2t2
(s2t2[
s2t
s2t]
u2t(t23s2yx(s2t2
(s2t2
(s2t2
y(s2t2)2
4s2t
4st(s2t2)
(s2t2
(s2t2
(s2t2)4
(s2t2)2u2s(3t2s2)u2t(t23s2 (s2t2
y(s2t22u2u2u(t2s2)24s2t22u4s2t2(s2t2)2
(t2s2
(s2t2)22u2u 0
u
costu
sint,
u
sintu
cost2us
2u[x2
cost
sin
cost
u
cos
cost
2uy2
sin
sint
u
sin
e2s
t
e2s
sintcost
e2s
sin2uescostuessin eses txs 2u ecost)ecost
sint
escos
sint
essin
e2s
sin
t
e2s
sintcost
e2s
cos2u
costu
sint
2u2u
2u
2s
y2 0 u u
u u x y
xtyt u
u
u
utx
y
sys2u
2u
)
u
(
2u
)
u,s
x2
xy
x
yx
y2
y(2u(
2u
)
u
(
2u
)
u,t
x2
xy
x
yx
y2
y
2u2u
(
)[(
(
)2]0
作自变量的变换,取,, (1)x,
yyxxy0(2)xyxzxuuu0 解(1)zf(xyg(,
g
g
g
g xx
x
x2x,yy
y
2y
0yxxyy(2x)x(2y)yz0z(z(x2y2(2)uf(xyzg(,, u u
u xx
xxuuuuu u u
u zz
zzuuu0u0.故u(,yxzx), 作自变量和因变量的变换,取uvww(uvuxy,v
y,wz 2zx
22
2y
0x设u ,x,xzy,变换方xy2yy
2
2x解(1)w
zwxzxzu uy yw wz zv vy y zwx(wuwv)wxwyw u
v
x w w yx(uyvy)xuv2zwyww
2
2 x2
xyw 2w2wx2
x
v2
x22
2 2
2
y22,
x
x3v2
ww1
2w
2w
1w
2w2w
v
x(u
uvx
x
x
v2x
2wxu2
y2w x)uv
2w,2z
2wx(u2
2wuvx)
2w
2wv2
)
2wu
2w
12w,x
20
22
2
(12y
2w3x3)v232w
w
u,是可微函数,于是
uv
u,所以,zxwxxyy(xyy(xy(xy,其中、xx设u ,x,xzy,变换方程xy
2
2z wxzyzwyx 1w x
w w z 1
yuyu 1 xu
y2
y2 2
2 12w x 2 x2
y3
y2u2
y2
y3
y4u
y
2
2z y
w y
2w y
w2
x2 ,y3u 2w
w
即
0.解得 v,是任意可微函
u (v)
zwx
1 x
xx
y
x
1xy 其中、z
f(xy)(1)exy2zez0xyzexyzxyzzyzx2y2z22x2y4z50.解(1)xyyexy2zezz0,xexy2zezz0 z
xe
xez2
ez22z
y2exy(ez2)yexyez(ez
y2(e2z4ez4ezxyexy(ez2
2
(exyxyexy)(ez2)yexyez (ez
(1xy)(ez2)2,(ez2)3exy2zx2(e2z4ez4ezxy
exy(ezxy xyz z xyz
z1x 1x,1y
z1z
2z
2
2
02z0
xyyzxyz1z,xzxyz1z 1 1xxy1yxy12yz(xy1)(1yz)2z 2y(yz1),
(xyz
(xy1)2
z
y(xy1)(1(xy
(xy2z2x(xz
(xyxy2x2zz24z0,2y2zz24z0 z1x,z1y
z z(z2)(1x)2z
(z
,2
(z(1x) y(z
(1x)(1y)(z2)3
(z2,2
(z2)(1y) (z
(z2)2(1.(z.dzzf(xz,zy)F(xy,yz,zx)0f(xyz,x2y2z2)0f(x,y)g(y,z)0解(1)dz
f1(xz,zy)d(xz)f2(xz,zy)d(zf1(xz,zy)(zdxxdz)f2(xz,zy)(dzdzzf1(xzzy)dxf2(xzzy)dy1xf1(xz,zy)f2(xz,z(2)F1(xy,yz,zx)(dxdy)F2(xy,yz,zx)(dyF3(xy,yz,zx)(dzdx)dz
F3(xy,yz,zx)F1(xy,yz,zx)dxF3(xy,yz,zx)F2(xy,yz,zx)F1(xy,yz,zx)F2(xy,yz,zx)dyF3(xy,yz,zx)F2(xy,yz,z1f(xyz,x2y2z2)(dxdy12f(xyz,x2y2z2)(2xdx2ydy2zdz)2f(xyz,x2y2z2)2xf(xyz,x2y2z2 dz dx12f(xyz,x2y2z2)2zf(xyz,x2y2z212f(xyz,x2y2z2)2yf(xyz,x2y2z2 dy.12f(xyz,x2y2z2)2zf(xyz,x2y2z212f1(xy)dxf2(xy)dyg1yz)dyg2yz)dz0,所以dz
f1(x,y)dxg2(y,
f2(x,y)g1(y,z)dyg2(y,zz(xy
zxyzyf
2
y(x
z
)x2xyy2xz证明
xy
yf
x,y z1
y
z
zyz2x
yf
,2y
f yf yy
y
y y z z2y f f z
f y
,y
y f y
y (x2y2z2)z2xy
z
z
2y y
f (x2y2z2
z
2xy zf y
f y
4xzy 2xz.zf y zx2y2yd2dx2
f(xx2xyy21 dz=2x2ydy,又在方程x2xyy21两边对x求导, 2xyx
2y
0
2xyx2
dz
2x2
2xyx2
2(x2y2,x222x2ydy(x2y)2(x2y2)12dy2
dx
dx
(x2y)22(5x38x2y15xy28y3.(x2设ux2y2z2zf(xyx3y3z33xyz xx2解u2x2zzx3y3z33xyzx 3x2
2
3yz3xyzz
yzx,z2
u
2x
yzxz2
2(xy2x2yyz2x2z2
2z22xzz2xy2yzz2xzx2z(z2
(z22(xz2x2yyz2x2y)2zzy (z22(x5yx3y32x3y2zx4z23x2y2z23xy3z24x2yz33xyz4(z22(y2z42xz5z6.(z2xy)x2y2z2a2
(1)x2y2ax
xu2yv
(2)yv2xu0
u2v3xy
u2v
x2y
uxyz
x2y2z21 x
,y2,xydya2x2x2yy2zz0解(1)2x2yya
2 a 212uuyv0
2vyu
v2u22v
ux
0
x4uvxy,
4uvy2uuvyv0 2v2
2uxv
x
0
4uv
4uv2uuv
u12v1,v32u 4v y
1
1 12uuv
4v
4u 4v
2
y8uv1
y8uv1uyzxyz
z
yz2x22x2z y
0
uxzxyz
uxz22y2z
0
yz, 22
(2yzz2xy)z(yz2x2y)2u
3z2,
z z(z22yzzx2)z(yz2x2y)2u z
y
z4x2z2y2z2x2y,z(2xzz2xy)z(xz2xy2)2u z
y
xy(y23z2.zzxydzdzxcoscosycossin
xuv(2)yu2v2zsin
zu3v3解(1)方程组两边对x求偏导数, 1sincosxcossinx 0sinsinxcoscosxzcos
cos,
sinzcoscot y 0sincosycossiny 1sinsinycoscosyzcos
,代入第三个方程 sincot 1xx
xvu 02ux2vxz3u2u3v2v
xvuz3uv3(yx2)
y 0yy
y2(vu) 12uy2vyz3u2u3v2v
y2(vu)z3(uv)3x
§3何应xasin2tybsintcostzccos2t,在点t42x23y2z29z23x2y2,在点(1,1,2x2y2z26xyz0,在点(1,2,1xtcosty3sin2tz1cost,在点t2解
t4
,对应的点为(y(y(
c)2x()2asint444
t
a,b(cos2tsin24
t
0z )2ccostsin4
4t4
c
t444
对应的点(2
c2x y z 2 2 2 axcz1(a2c22(2)F(xyz)2x23y2z29G(xyz)3x2y2z2为
Fz
6
F(x,y,z)0G(x,y,z)0 由 GG GG
z 6x 2
2z(F,G)6
2z16yz,(F,G)
4x20xz(y,
2
(z,
(F,G)
6y28xy(x,
2(16
x1y1z2 法平面方程为8(x110y17(z2)0,即8x10y7z12F(xyz)x2y2z26G(xyz)xyz
Fz
2
2z由 GG z 1GG(F,G)2
2z2(yz),(F,G)
2x2(zx)(y, (z, (F,G)
2y2(xy)(x, )x1y2z11 1(x1z1)0xz0t对应点为(,4,1x(1sin
222y()2sint2
0
z()3sin
t23t t
x
y z1 2(x3(z1)0,即2x3z32(1)ye2xz0,在点(1,1,2xa
y
zc
1在点(a,b
c)333z2x24y2在点(2,1,12333xucosv,yusinv,zavp0(u0v0.解(1)F(x,y,z)ye2xz,则法向量(F,F,F
(2e2xz,1,e2xz
z
2(x1y1z2)0即2xyz1x1y1z2
x y z(2)令F(x,y,z) a b2
1c b (F,F,F (,,
2x,, ,,
2(
,1
1))33)
(a,b,c
ab33333331所求的切平面方程(xa1y3331
b)1(z
c)0,即1x1y1z a3x y3
z
法线方程为 1a
1b
31cn(3)F(xyz)2x24y2zn
的切平面方程为8(x28y1z12)0,即8x8yz128x8yz12x2
y1z128
1 z
cos
sin 0(4)由
z v
usin
ucos a(y,(u,(y,(u,p0
a
asinv0
cos(y,(u,(y,(u,p
acosv0(y,(y,(u,usin
sinvucosp0p
u0n(asinv0,acosv0,u0p0(u0v0(x,y,z)(u0cosv0,u0sinv0,av0)asinv0(xu0cosv0acosv0yu0sinv0u0(zav00,即axsinv0aycosv0u0zau0v0,法线方程为:xu0cosv0asinv0
yu0sinacos
zav0xaetcostyaetsintzaetx2y2z2的母线相证明x2y2z2P(xyz因此,母线的方向向量为1(xyzP2(x(t),y(t),z(t))(aet(costsint),aet(sintcost),aet)(xy,xy,z)2 1212
x(xy)y(xy)z
2z x2x2y2z (xy)2(xy)2z2z 3z6, x3y3a33xy,
(a0)
2
1 解x3y
a
(a0x求导,有3
3 3
3 0 x在曲线上任一点(x0y0kx0
(x00yy0
(xx0)x0x1 1A(x3a30B(0,y3a3 2 24 400dAB(x3a3y3a3)2(a3a3 00ax22y23z221x4y6z000解x22y23z221P00
,
,
n(2x0,4y0,6z0)x4y6z01
44
6z0
z0P(xy
x22y23z221P(1,2,2
1x14y26(z2)0,x4y6z21为所求切平面方程.F(xazybz)0的切平面与某一定直线平行,其中ab证 G(x,y,z)F(xaz,ybz),则曲面为G(x,y,z)0,曲面上任意一P0(x0,y0z0n(Gx,Gy,Gz0
nab,10nab,1,故曲面过P0点的切平面平行于方向向量为ab,1F(xazybz0的切平面与一方向向量为axzxeyx00证明F(xyz)xeyzP00
,
,
n(Fx,Fy,Fz 0
x0 x20ey0(10)(xx0
)0 y20y2 zxey0 x
x2 x02(10)ey0x0ey0yz02y yF(x,y,z)0,G(x,y,z)的交线在OxyF(x,y,z)0解G(x,y,z)
P0(x0y0z0(F,((F,(y,(F,(z,(F,(x,
y
z F(xyz)0,G(xyz)0的交线在Oxy x
y (F,(z,(F,(z, (y,0§4向导0f(xyzxy2z3fP(1,1,1沿方向l2,2,10 由 1 2y 3z
,故
(1,2,3)
xy0l0l1l1(2,2,1),所 l03 3求函数uxyzA(5,1,2B(9,4,14AB解uyzuxzuxy (u,u,u
(2,10,5),l
AB
Axy A
(2,10,5)
(4,3,12)98
(x,y0 (1)ulnx2y2xy)(1,1lx轴正向的夹角为600 (2)uxexy(xy1,1l与向量(1,1 解
x2y
2x2y
,u
2
x2 x2
(x,y
x2y
(x,y0 000
l(cos600,sin600)
(1 3)2
1 3x,y3
l0(1,1)(
) 2(x,y
0(2)uexy(1xyux2exy
u,y
(1xy),
(2e,e) (x,y02l02
1212121212
(2e,e)
1212
32e2设函数f(xy)
,
)可微,单位向量l1
),
)75f(x0,y0)1,f(x0,y0)0,确定l使得:f(x0,y0)75解
f(x0,y0) f(x0f(x0,y0) f(x0,y0) 1 f(x,y f(x,y f(x,y) 0 0 0 ) ,22 22解出,f(x0,y0)f(x0,y0) 2 f(x0y0)
,即2
2
7,再由2217575 7575出(45
或((3
,即l5
(45
或l3
5fP0(2,0f(xyP0P12,2的方向导数是1,指向原点的方向导数是3,试回答:P33,21f(2,0)0f(2,0)(1)
f(2,0)3
解由 3
f
f
0
f
f
0
f
1f(2,0)
f(2,0) 15255 15255§5Taylor(1)f(xy)2x2xyy26x3y5在(1,2(2)f(xyx2xyy23x2y4在(1,1解
4xy6,
2x2y
24,
2,y
2,高于二阶偏导数均为0在(1,2)点,f(1,2) ,
20
4
2
12y
2
f(x,y)2(x1)2(x1)(y2)(y2)25
2xy3,
x2y2
2
2
2
2
2
1
2
2
2
1,2
2f(x,y)2(x1)(y1)(x1)2(x1)(y1)(y1)2f(xy)
y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理个案:上消化道出血
- 护理礼仪与护士服饰
- 养发行业的优势与前景
- 焦作大学《数学教学技能综合训练》2023-2024学年第一学期期末试卷
- 企业竞争策略研究报告
- 信阳农林学院《标志设计》2023-2024学年第二学期期末试卷
- 漯河食品职业学院《统计学原理与实务》2023-2024学年第二学期期末试卷
- 大连民族大学《OS开发技术》2023-2024学年第二学期期末试卷
- 天津中德应用技术大学《节能技术》2023-2024学年第二学期期末试卷
- 兰州职业技术学院《中医文献学》2023-2024学年第一学期期末试卷
- 我的人工智能导论职业规划
- 幼儿园沙水区培训活动
- 2024年银行考试-兴业银行笔试参考题库含答案
- 山东省潍坊市2023-2024学年一年级下学期期中质量检测数学试题
- 2022-2023学年教科版六年级下册科学实验探究题专项训练(含答案解析)
- 功能无机材料材料的表征课件
- 中国英语能力等级量表
- 植物保护技术试题
- 小学创客课件智能台灯
- Access2016数据库应用技术教程
- 脚手架工程安全管理风险辨识及防范措施
评论
0/150
提交评论