![2023年湖南省株洲市醴陵两校高考数学倒计时模拟卷(含答案解析)_第1页](http://file4.renrendoc.com/view/606447061994782d5fff9d0d873479eb/606447061994782d5fff9d0d873479eb1.gif)
![2023年湖南省株洲市醴陵两校高考数学倒计时模拟卷(含答案解析)_第2页](http://file4.renrendoc.com/view/606447061994782d5fff9d0d873479eb/606447061994782d5fff9d0d873479eb2.gif)
![2023年湖南省株洲市醴陵两校高考数学倒计时模拟卷(含答案解析)_第3页](http://file4.renrendoc.com/view/606447061994782d5fff9d0d873479eb/606447061994782d5fff9d0d873479eb3.gif)
![2023年湖南省株洲市醴陵两校高考数学倒计时模拟卷(含答案解析)_第4页](http://file4.renrendoc.com/view/606447061994782d5fff9d0d873479eb/606447061994782d5fff9d0d873479eb4.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则()A.函数在上单调递增 B.函数在上单调递减C.函数图像关于对称 D.函数图像关于对称2.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是()A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//nC.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β3.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.4.已知是虚数单位,则复数()A. B. C.2 D.5.点为的三条中线的交点,且,,则的值为()A. B. C. D.6.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.20 B.27 C.54 D.647.已知复数满足:(为虚数单位),则()A. B. C. D.8.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为()A. B.C. D.9.已知函数,若,则下列不等关系正确的是()A. B.C. D.10.已知向量,满足,在上投影为,则的最小值为()A. B. C. D.11.已知集合,,则的真子集个数为()A.1个 B.2个 C.3个 D.4个12.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线,点,在曲线上,且以为直径的圆的方程是.则_______.14.在中,,,,则绕所在直线旋转一周所形成的几何体的表面积为______________.15.在中,若,则的范围为________.16.如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有____种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.18.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.19.(12分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.20.(12分)对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷.为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)经常使用信用卡偶尔或不用信用卡合计40岁及以下15355040岁以上203050合计3565100(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?(2)①现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;②将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差.参考公式:,其中.参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63521.(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.22.(10分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】
依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【题目详解】解:由,,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【答案点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.2.B【答案解析】
根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.【题目详解】A.若,则在中存在一条直线,使得,则,又,那么,故正确;B.若,则或相交或异面,故不正确;C.若,则存在,使,又,则,故正确.D.若,且,则或,又由,故正确.故选:B【答案点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.3.A【答案解析】
由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【题目详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.【答案点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.4.A【答案解析】
根据复数的基本运算求解即可.【题目详解】.故选:A【答案点睛】本题主要考查了复数的基本运算,属于基础题.5.B【答案解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【题目详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B【答案点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.6.B【答案解析】
设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【题目详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【答案点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。7.A【答案解析】
利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【题目详解】由,则,所以.故选:A【答案点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.8.D【答案解析】
设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【题目详解】显然直线不满足条件,故可设直线:,,,由,得,,解得或,,,,,,解得,直线的斜率的取值范围为.故选:D.【答案点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.9.B【答案解析】
利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【题目详解】∵在R上单调递增,且,∴.∵的符号无法判断,故与,与的大小不确定,对A,当时,,故A错误;对C,当时,,故C错误;对D,当时,,故D错误;对B,对,则,故B正确.故选:B.【答案点睛】本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.10.B【答案解析】
根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【题目详解】在上投影为,即又本题正确选项:【答案点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.11.C【答案解析】
求出的元素,再确定其真子集个数.【题目详解】由,解得或,∴中有两个元素,因此它的真子集有3个.故选:C.【答案点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集.12.C【答案解析】
根据直线与平面,平面与平面的位置关系进行判断即可.【题目详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【答案点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
设所在直线方程为设、点坐标分别为,,都在上,代入曲线方程,两式作差可得,从而可得直线的斜率,联立直线与的方程,由,利用弦长公式即可求解.【题目详解】因为是圆的直径,必过圆心点,设所在直线方程为设、点坐标分别为,,都在上,故两式相减,可得(因为是的中点),即联立直线与的方程:又,即,即又因为,则有即∴.故答案为:【答案点睛】本题考查了直线与圆锥曲线的位置关系、弦长公式,考查了学生的计算能力,综合性比较强,属于中档题.14.【答案解析】
由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得.【题目详解】解:由题知该旋转体为两个倒立的圆锥底对底组合在一起,在中,,,,如下图所示,底面圆的半径为,则所形成的几何体的表面积为.故答案为:.【答案点睛】本题考查旋转体的表面积计算问题,属于基础题.15.【答案解析】
借助正切的和角公式可求得,即则通过降幂扩角公式和辅助角公式可化简,由,借助正弦型函数的图象和性质即可解得所求.【题目详解】,所以,.因为,所以,所以.故答案为:.【答案点睛】本题考查了三角函数的化简,重点考查学生的计算能力,难度一般.16.【答案解析】
分三步来考查,先从到,再从到,最后从到,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.【题目详解】分三步来考查:①从到,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有种走法;②从到,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有种走法;③从到,由①可知有种走法.由分步乘法计数原理可知,共有种不同的走法.故答案为:.【答案点睛】本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【答案解析】试题分析:(1)由正弦定理得到.消去公因式得到所以.进而得到角A;(2)结合三角形的面积公式,和余弦定理得到,联立两式得到.解析:(I)因为,所以,由正弦定理,得.又因为,,所以.又因为,所以.(II)由,得,由余弦定理,得,即,因为,解得.因为,所以.18.(1),.(2)见解析【答案解析】
(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【题目详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,,即,由,得,,当且仅当,即,时等号成立.故,即.【答案点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.19.(1);(2)证明见解析;(3)是,理由见解析.【答案解析】
(1)根据两个曲线的焦点相同,得到,再根据与的公共弦长为得出,可求出和的值,进而可得出曲线的方程;(2)设点,根据导数的几何意义得到曲线在点处的切线方程,求出点的坐标,利用向量的数量积得出,则问题得以证明;(3)设直线,直线,、、,推导出以及,求出和,通过化简计算可得出为定值,进而可得出结论.【题目详解】(1)由知其焦点的坐标为,也是椭圆的一个焦点,,①又与的公共弦的长为,与都关于轴对称,且的方程为,由此易知与的公共点的坐标为,,②联立①②,得,,故的方程为;(2)如图,,由得,在点处的切线方程为,即,令,得,即,,而,于是,因此是锐角,从而是钝角.故直线绕点旋转时,总是钝角三角形;(3)设直线,直线,、、,则,设向量和的夹角为,则的面积为,由,可得,同理可得,故有.又,故,则,因此,的面积为定值.【答案点睛】本题考查了圆锥曲线的和直线的位置与关系,考查钝角三角形的判定以及三角形面积为定值的求解,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于斜率的方程,计算量大,属于难题.20.(1)不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关;(2)①;②分布列见解析,,【答案解析】
(1)计算再对照表格分析即可.(2)①根据分层抽样的方法可得经常使用信用卡的有人,偶尔或不用信用卡的有人,再根据超几何分布的方法计算3人或4人偶尔或不用信用卡的概率即可.②利用二项分布的特点求解变量的分布列、数学期望和方差即可.【题目详解】(1)由列联表可知,,因为,所以不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关.(2)①依题意,可知所抽取的10名40岁及以下网民中,经常使用信用卡的有(人),偶尔或不用信用卡的有(人).则选出的4人中至少有3人偶尔或不用信用卡的概率.②由列联表,可知40岁以上的网民中,抽到经常使用信用卡的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用信用卡的市民的概率为.由题意得,则,,,.故随机变量的分布列为:0123故随机变量的数学期望为,方差为.【答案点睛】本题主要考查了独立性检验以及超几何
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基建科工程施工范本合同
- 三农村人居环境整治实施方案
- 公务车辆定点维修合同
- 法人向公司借款合同
- 经典房地产开发的合同
- 编程语言高级应用作业指导书
- 养殖业专业作业指导书
- 企业智能核能技术与应用作业指导书
- 软件技术开发与测试作业指导书
- 高港区二手房买卖合同
- 小学六年级数学上册《简便计算》练习题(310题-附答案)
- 青海省西宁市海湖中学2025届中考生物仿真试卷含解析
- 2024年河南省《辅警招聘考试必刷500题》考试题库及答案【全优】
- 2024年中国养老产业商学研究报告-银发经济专题
- 高教版2023年中职教科书《语文》(基础模块)下册教案全册
- 人教版英语七年级上册阅读理解专项训练16篇(含答案)
- 幼小衔接学拼音
- 有限空间辨识参考目录图片对照版
- 成本会计第一章总论
- 桥式起重机试验项目及其内容方法和要求
- GA∕T 1193-2014 人身损害误工期、护理期、营养期评定
评论
0/150
提交评论