图像与视频处理ver01第二章图像处理基础_第1页
图像与视频处理ver01第二章图像处理基础_第2页
图像与视频处理ver01第二章图像处理基础_第3页
图像与视频处理ver01第二章图像处理基础_第4页
图像与视频处理ver01第二章图像处理基础_第5页
已阅读5页,还剩180页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图像与处Image 第二讲:图像处理基人工智能与机器InstituteofArtificial ligenceand兰旭图像处Image图像处ImageThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematicalThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematical图像图像Image处HumanVisualThebestvisionmodelweKnowledgeofhowimagesformintheeyecanhelpuswithprocessingdigitalWewilltakejustawhirlwindtourofthehumanvisualsystem图像 处理Image 睫状睫状OfThe

角前前虹虹眼球晶白内障眼球晶

纤纤维肌视网角视网

玻璃状盲盲

神经

Retinalsurface凹Cones:details(women)6-7m:color-photopic凹图像图像Image处

Choroid:nutritiontoeyeIris:colortoeyeRods:generalvisionCones:details(women)HumanVisualThelensfocuseslightfromobjectsontotheretinaTheretinaiscoveredwithlightreceptorscalledcones(6-7million)androds(75-150Conesareconcentratedaroundthefoveaandareverysensitivetocolour,photopicvisionRodsaremorespreadoutandaresensitivetolowlevelsofillumination,scotopicvisionBlind-SpotDrawanimagesimilartothatbelowonapieceofpaper(thedotandcrossareabout6inchesapart)CloseyourrighteyeandfocusonthecrosswithyourlefteyeHoldtheimageabout20inchesawayfromyourfaceandmoveitslowlytowardsyouThedotshouldImageFormationInTheMuscleswithintheeyecanbeusedtochangetheshapeofthelensallowingusfocusonobjectsthatarenearorfarawayAnimageisfocusedontotheretinacausingrodsandconesto eexcitedwhich ysendsignalstothe BrightnessAdaptation&Thehumanvisualsystemcanperceive y1010differentlightintensityHowever,atanyonetimewecanonlydiscriminatebetweenamuchsmallerregionisrelatedtothelightintensitiesoftheregionssurroundingit图像处Image图像处ImageGoodWeberpoorbrightnesspoorbrightness图像 处Image Inlow-levelillumination,ispoor(WeberratioisCarriedoutbyrods-暗光Itimprovessignificantlyasbackgroundcarriedoutbycones—图像处Image图像处ImageBrightnessAdaptation&ErnstPerceivedbrightnessIsPerceivedbrightnessIsnotasimplefunctionofintensityAnexampleofMachUndershootaroundTheboundaryofRegionsUndershootaroundTheboundaryofRegionsOfdifferentAnAnexampleofsimultaneousPerceivedPerceivedbrightnessdoesnotdependSimplyonitsintensityFormoregreatillusionexamplestakealookAvailable图像图像Image处OpticalOurvisualplaylotsoftricksonusMindMapExercise:MindMapForNoteBeauLotto:BeauLotto:OpticalIllusionsShowHowWeThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematicalLightAndTheElectromagneticIn1666SirIsaacNewtondiscoveredthatlightpassedthroughaprismsplitsintoacontinuousspectrumofLightisjustaparticularpartoftheelectromagneticspectrumthatcanbesensedbythehumaneyeTheelectromagneticspectrumissplitupaccordingtothewavelengthsofdifferentformsofenergyLightandEMc E h:Planck's光谱能波长m光谱能ElectromagneticElectromagneticshorterwaveMoreenergyshorterwaveMoreenergyv图像Image图像Image处LightandEMThecolorsthathumansperceiveinanobjectaredeterminedbythenatureofthelightreflectedfromtheobject.e.g.greenobjectsreflectlightwithwavelengthsMonochromaticlight:voidofIntensityistheonlyattribute,fromblacktoMonochromaticimagesarereferredtoasgray-Chromaticlightbands:0.43to0.79umThequalityofachromaticlightsource:Radiance:totalamountofenergyLuminance(lm):theamountofenergyanobserverfromalightBrightness:asubjectivedescriptoroflightperceptionthatisimpossibletomeasure.Itembodiestheachromaticnotionofintensityandoneofthekeyfactorsindescribingcolorsensation.图像图像Image处ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematical图像 处Image Sampling,sationAndInthefollowingslideswewillconsiderwhatisinvolvedincapturingadigitalimageofareal-worldsceneImagesensingandSamplingand图像 处Image ImageingenergylandsonasensormaterialresponsivetothattypeofenergyandthisgeneratesavoltageCollectionsofsensorsarearrangedtocaptureimagesImagingLineofImage ArrayofImage图像处Image图像处ImageImagetolightHighprecision

Lowcost:UsingSensorStripsand

图像图像Image处ImageImagesaretypicallygeneratedbyenergyreflectedbytheobjectsinthatsceneTypicalnotionsofilluminationandscenecanbewayoff:X-raysofaUltrasoundofanunbornbabyimagesofmoleculesASimpleImageFormationProportionaltoenergyradiatedbyaphysicalsourcef(x,y)i(x,y)rProportionaltoenergyradiatedbyaphysicalsourcewhere0<i(x,y)<and0<r(x,y)<1SomeTypicalRangesofLumen—AunitoflightfloworluminousLumenpersquaremeter(lm/m2)—ThemetricunitofmeasureforilluminanceofasurfaceOnaclearday,thesunmayproduceinexcessof90,000lm/m2ofilluminationonthesurfaceoftheEarthOnacloudyday,thesunmayproducelessthan10,000lm/m2ofilluminationonthesurfaceoftheEarthOnaclearevening,themoonyieldsabout0.1lm/m2ofThetypicalilluminationlevelinacommercialofficeisabout1000SomeTypicalRangesof0.01forblack0.65forstainless0.80forflat-whitewall0.90forsilver-plated0.93for图像 处Image GrayMonochromelf(x0,y0)LminlLmaxLminiminrminLmaximaxrmax[Lmin,Lmax图像图像Image处ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematicalImageSamplingAndAdigitalsensorcanonlymeasurealimitednumberofsamplesatadiscretesetofenergysationistheprocessofconvertinga oguesignalintoadigitalrepresentationofthissignalImageSamplingAndImageSampling 图像 处Image ImageSamplingAndRememberthatadigitalimageisalwaysonlyanapproximationofarealworldImagequalityisImagequalityisdeterminedbythenumberofsamplesAnddiscreteintensitylevelsusedinsamplingand 图像图像Image处ImageSamplingAndSamplingisdeterminedbythesensorarrangementusedtogeneratetheSamplingaccuracyrelatestoqualityoftheopticalcomponentsofthesystem.ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematical图像处Image图像处ImageImageBeforewediscussimageacquisitionrecallthatadigitalimageiscomposedofMrowsandNcolumnsofpixelseachstoringavaluef(row,f(row,Wewillseelateronthatimagescaneasilyberepresentedas图像Image图像Image处RepresentingDigitalTherepresentationofanM×Nnumericalarrayasf(x,y)

f(0,f

ff

f(0,N f(1,N f(M1,

f(M

f(M1,N TherepresentationofanM×Nnumericalarrayas

a0,N

Aaa

M

aM

1,N TherepresentationofanM×Nnumericalarrayinfff(x,y) f(M

f f(2, f(M,

f(1,N)f(2,N) f(M,N 图像 处Image Saturation:Saturation:upperlimitNose:LowerlimitContrast:Contrast:highest-图像 处Image RepresentingDigitalDiscreteintensityinterval[0,L-1],Thenumberbofbitsrequiredtostorea×Ndigitizedimageb=M×N×k图像 处Image RepresentingDigital60f/s,3.75TB/s,60f/s,3.75TB/s,2h,图像 处Image SpatialdeterminedbyhowsamplingwascarriedSpatialresolutionsimplyreferstothesmallestdiscernabledetailVisionspecialistswilloftentalkaboutpixel

Graphicdesignerswilltalkaboutdotsperinch(DPI)图像与处Spadeorocsneny图像处Image图像处ImageSpatialResolution图像图像Image处IntensityLevelIntensitylevelresolutionreferstothenumberofintensitylevelsusedtorepresenttheimageThemoreintensitylevelsused,thefinerthelevelofdetaildiscernableinanimageIntensitylevelresolutionisusuallygivenintermsofthenumberofbitsusedtostoreeachintensityNumberofNumberofIntensity120,2400,01,10,40000,0101,8SpatialandIntensitySpatial—Ameasureofthesmallestdiscernibledetailinan—statedwithlinepairsperunitdistance,dots(pixels)perunitdistance,dotsperinch(dpi)IntensityThesmallestdiscerniblechangeinintensitystatedwith8bits,12bits,16bits,图像处Image图像处ImageIntensityLevel256graylevels(8bitsperpixel)128gray(764gray(632gray(516gray(48graylevels(3bpp)4gray(22gray(1图像 处Image IntensityLevel256graylevels(8bitsper 128graylevels(7 64graylevels(6 32graylevels(516graylevels(4 8graylevels(3 4graylevels(2 2graylevels(1图像Image图像Image处Resolution:HowMuchIsThebigquestionwithresolutionisalwayshowmuchisenough?ThisalldependsonwhatisintheimageandwhatyouwouldliketodowithitKeyquestionsDoestheimagelookaestheticallyCanyouseewhatyouneedtoseewithinthe Thepictureontherightisfineforcountingthenumberofcars,butnotforreadingthenumberplate图像 处Image IntensityLevelLow Medium High图像图像Image处IntensityLevelIntensityLevelIntensityLevel图像 处Image PointslyingonanPointslyingonancorrspondtoimagesofequalsubjectivequalityFixedKIncreaseImageswithalargeamountofdetailonlyafewintensitylevelsmaybe图像图像Image处ImageInterpolation—Processofusingknowndatatoestimateunknownvaluese.g.,zooming,shrinking,rotating,andgeometricInterpolation(sometimescalledresampling)—animagingmethodtoincrease(ordecrease)thenumberofpixelsinadigitalimage.SomedigitalcamerasuseinterpolationtoproducealargerimagethanthesensorcapturedortocreatedigitalzoomUsingknowndatatoestimatevaluesatunknown 图像 处Image ImageInterpolation:NearestNeighborf1(x2,y2)f(round(x2),

f1(x3,y3)f(round(x3),图像图像Image处ImageInterpolation:Bilinearv(x,y)axbycxy444f2(x,(1a)(1b)f(l,k)a(1b)f(l1,k(1a)bf(l,k1)abf(l1,klfloor(x),kfloor(y),axl,byImageInterpolation:BicubicTheintensityvalueassignedtopoint(x,y)isobtainedbythefollowingequation ay f3(x,y) ay i0 jThesixteencoefficientsaredeterminedbyusingthesixteennearestneighbors.PreservemoredetailPreservemoredetail图像 处Image Examples:213*162-72dpi---213*162-72dpi--- 图像 处Image Examples:150dpi---150dpi--- 图像图像处Image Examples:图像Image图像Image处Examples:图像处Image图像处ImageExamples:图像处Image图像处ImageExamples:图像图像Image处ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematical图像Image图像Image处BasicRelationshipsBetweenRegionsandNeighborsofapixelpatcoordinates4-neighborsofp,denotedbyN4(p):(x-1,y),(x+1,y),(x,y-1),and(x,y+1).4diagonalneighborsofp,denotedbyND(p):(x-1,y-1),(x+1,y+1),(x+1,y-1),and(x-1,y+1).8neighborsofp,denotedN8(p)=N4(p)ULetVbethesetofintensity4-adjacency:TwopixelspandqwithvaluesfromVare4-adjacentifqisinthesetN4(p).8-adjacency:TwopixelspandqwithvaluesfromVare8-adjacentifqisinthesetN8(p).LetVbethesetofintensitym-adjacency:TwopixelspandqwithvaluesfromVarem-adjacentifqisinthesetN4(p),qisinthesetND(p)andthesetN4(p)∩N4(q)hasnopixelsvaluesarefrom图像 处Image qisinthesetN4(p),qisinthesetND(p)andthesetN4(p)∩N4(q)hasnopixelswhosevaluesarefromV.图像图像Image处BasicRelationshipsBetweenA(digital)path(orcurve)frompixelpwithcoordinates(x0,y0)topixelqwithcoordinates(xn,yn)isasequenceofdistinctpixelswith(x0,y0),(x1,y1),…,(xn,Where(xi,yi)and(xi-1,yi-1)areadjacentfor1≤i≤HerenisthelengthoftheIf(x0,y0)=(xn,yn),thepathisclosedWecandefine4-,8-,andm-pathsbasedonthetypeofadjacency图像Image图像Image处Examples:Adjacencyand

V={1,

V={1,

qisinthesetN4(p),qisinthesetND(p)andthesetN4(p)∩N4(q)hasnopixelswhosevaluesarefromV.

V={1,1 11 1

11 11 The8-pathfrom(1,3)to(1,3),(1,2),(2,2),(1,3),(2,2),

Them-pathfrom(1,3)to(1,3),(1,2),(2,2),图像Image图像Image处BasicRelationshipsBetweenConnectedinLetSrepresentasubsetofpixelsinanimage.Twopixelspwithcoordinates(x0,y0)andqwithcoordinates(xn,yn)aresaidtobeconnectedinSifthereexistsapath(x0,y0),(x1,y1),…,(xn,Wherei,0in,(xi,yi)ApathbetweenthemconsistingentirelyofpixelsinLetSrepresentasubsetofpixelsinanForeverypixelpinS,thesetofpixelsinSthatareconnectedtopisIfShasonlyoneconnectedcomponent,thenSiscalledConnectedWecallRaregionoftheimageifRisaconnectedTworegions,RiandRjaresaidtobeadjacentiftheirunionformsaconnectedset.Regionsthatarenottobeadjacentaresaidtobe图像 处Image Adjacent图像Image图像Image处QuestionInthefollowingarrangementofpixels,arethetworegions(of1s)adjacent?(if8-adjacencyisused)RegionRegionRegion11Region111101010001111111Inthefollowingarrangementofpixels,arethetwoparts(of1s)adjacent?(if4-adjacencyisused)PartPartPart11Part111101010001111111图像图像Image处RegionRegionInthefollowingarrangementofpixels,thetworegions(of1s)aredisjoint(if4-adjacencyisused)11111101010001111111RegionInthefollowingarrangementofpixels,thetworegions(of1s)aredisjoint(if4-adjacencyisused)111101010001111111图像 处Image BasicRelationshipsBetweenBoundary(orTheboundaryoftheregionRisthesetofpixelsintheregionthathaveoneormoreneighborsthatarenotinR.IfRhappenstobeanentireimage,thenitsboundaryisdefinedasthesetofpixelsinthe andlastrowsandcolumnsoftheimage.ForegroundandAnimagecontainsKdisjointregions,Rk,k=1,2,…,K.LetRudenotetheunionofalltheKregions,andlet(Ru)cdenoteitscomplement.AllthepointsinRuiscalledforeground;Allthepointsin(Ru)ciscalledbackground.图像 处Image InnerboundaryOuter图像Image图像Image处QuestionInthefollowingarrangementofpixels,thecircledpointispartoftheboundaryofthe1-valuedpixelsif8-neighborisused,trueorfalse?00000000000110001100011100111000000图像图像Image处QuestionInthefollowingarrangementofpixels,thecircledpointispartoftheboundaryofthe1-valuedpixelsif4-neighborisused,trueorfalse?00000000110001100011100111000000图像Image图像Image处DistanceGivenpixelsp,qandzwithcoordinates(x,y),(s,t),(u,v)respectively,thedistancefunctionDhasfollowingproperties:D(p,q)≥ [D(p,q)=0,iffp=D(p,q)=D(q,D(p,z)≤D(p,q)+D(q,ThefollowingarethedifferentDistanceEuclideanDistanceDe(p,q)=[(x-s)2+(y-CityBlockDistance:D4(p,q)=|x-s|+|y-t|ChessBoardDistance:D8(p,q)=max(|x-s|,|y-t|)图像Image图像Image处QuestionInthefollowingarrangementofpixels,what’sthevalueofthechessboarddistancebetweenthecircledtwopoints?0000000000011001100010000000000000Inthefollowingarrangementofpixels,what’sthevalueofthecity-blockdistancebetweenthecircledtwopoints?0000000000011001100010000000000000图像Image图像Image处QuestionInthefollowingarrangementofpixels,what’sthevalueofthelengthofthem-pathbetweenthecircledtwopoints?000000011000 11000000000000000图像图像Image处QuestionInthefollowingarrangementofpixels,what’sthevalueofthelengthofthem-pathbetweenthecircledtwopoints? ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematicalIntroductiontoMathematicalOperationsinArrayvs.Matrix A a12

B

22

22Arraya a A.*BArraya a

22

A*B

a11b11aa a

aa a 22

Matrix图像 处Image IntroductiontoMathematicalLinearvs.NonlinearHf(x,y)g(x,Haifi(x,y)ajfj(x,Haifi(x,y)Hajfj(x,aiHfi(x,y)ajHfj(x,aigi(x,y)ajgj(x,

HissaidtobealinearHissaidtobeanonlinearoperatorifitdoesnotmeettheabovequalification.图像 处Image ArithmeticArithmeticoperationsbetweenimagesarearrayoperations.Thefourarithmeticoperationsaredenoteds(x,y)=f(x,y)+d(x,y)=f(x,y)–p(x,y)=f(x,y)×v(x,y)=f(x,y)÷图像 处Image AnExampleofImageLeastsignificantbitLeastsignificantbit图像Image图像Image处Example:AdditionofNoisyImagesforNoiseNoiselessimage:Noise:n(x,y)(ateverypairofcoordinates(x,y),thenoiseisuncorrelatedandhaszeroaveragevalue)Corruptedimage:g(x,y)=f(x,y)+ReducingthenoisebyaddingasetofnoisyKig(x,y)1g(x,iKKg(x,y)1g(x,

K2 g(x,y

K

E[g(x,y)f(x,Eg(x,y)EK

gi(x,y)

1gi(x,yKK K

E[

gi(x,y)f(x,E

f(x,y)ni(x,

K

(f(x,y)n(x,y))

f(x,f(x,y)E

ni(x,y)

iKif(x,

K

E[K

in(x,i2 11Kn(x,y) Ki

2n(x,y图像 处Image Example:AdditionofNoisyImagesforNoiseInastronomy,imagingunderverylowlightlevelsfrequentlycausessensornoisetorendersingleimagesvirtuallyuselessfor Inastronomicalobservations,similarsensorsfornoisereductionbyobservingthesamesceneoverlongperiodsoftime.Imageaveragingisthenusedtoreducethenoise. 1020 50 100图像 处Image AnExampleofImageSubtraction:MaskModeMaskh(x,y):anX-rayimageofaregionofapatient’sLiveimagesf(x,y):X-rayimagescapturedatTVratesafterinjectionofthecontrastmediumg(x,y)=f(x,y)-TheproceduregivesamovieshowinghowthecontrastmediumpropagatesthroughthevariousarteriesintheareabeingLiveEnhanced

Theproceduregivesamovieshowinghowthecontrastmediumpropagatesthroughthevariousarteriesintheareabeingobserved.图像 处Image AnExampleofImageShadedShadedShadedShadedG(x,y)=f(x,y)h(x,y):f(x,y)perfectimage;h(x,y)shaded 图像 处Image IntensityGivenimagef,guaranteethefullrangeofanarithmeticoperationbetweenimagesiscapturedintoafixednumberofbits0-255,sum:0-

fmfmin(ffsK[fm/max(fm)]0fmK8bit8bit图像 处Image SpatialSingle-pixelAlterthevaluesofanimage’spixelsbasedonthesT(z)图像处Image图像处ImageSpatial NeighborhoodThevalueofthispixelisdeterminedbyaspecifiedoperationinvolvingthepixelsintheThevalueofthispixelisdeterminedbyaspecifiedoperationinvolvingthepixelsintheinputimagewithcoordinatesinSxy图像图像Image处GeometricSpatialGeometrictransformation(rubber-sheet—Aspatialtransformationof(x,y)T{(v,—intensityinterpolationthatassignsintensityvaluestothespatiallytransformedpixels.Affine

1

00 1

t31 图像 处Image IntensityForward(x,y)T{(v,It’spossiblethattwoormorepixelscanbetransformedtothesamelocationintheoutputimage.Inverse(v,w)T1{(x,ThenearestinputpixelstodeterminetheintensityoftheoutputpixelInversemapsaremoreefficienttoimplementthan 图像 处Image Example:ImageRotationandIntensityRotate21-图像Image图像Image处Image Inputandoutputimagesareavailablebutthetransformationfunctionisunknown.Goal:estimatethetransformationfunctionanduseittoregisterthetwoimages. Oneoftheprincipalapproachesforimage Thecorrespondingpointsareknownpreciselyintheinputandoutput(reference)images.Asimplemodelbasedonbilinearxc1vc2wc3vwycvcwcvw Where(v,w)and(x,y)arethecoordinatesoftiepointsintheinputandreferenceimages.mIm图像 处ImageImageImageEOCompositebeforeIR

IRCompositeafter图像 处Image 图像配参考图像(主图像 待配准图像(辅图像 图像图像Image处AffinevsNon-Non-Non-AverageAnatomicalImagesfrom10Subjectsdisplayedat1.5x1.5x1.5Image 图像Image Imageregistration图像 处Image ImageAparticularlyimportantclassof2-Dlineartransforms,denotedT(u,v)M1NT(u,v) f(x,y)r(x,y,u,x0wheref(x,y)istheinputr(x,y,u,v)istheforwardtransformationkernel,variablesuandvarethetransformvariables,u=0,1,2,...,M-1andv=0,1,...,N-图像Image图像Image处ImageGivenT(u,v),theoriginalimagef(x,y)canberecoveredusingtheinversetransformationofT(u,v).M1Nf(x,y) T(u,v)s(x,y,u,u0wheres(x,y,u,v)istheinversetransformation x=0,1,2,...,M-1andy=0,1,...,N-1.图像 处Image Example:ImageDenoisingbyUsingDCTDifferentDifferentsinusoidal图像 处Image FourierFT图像图像Image处图像图像Image处ForwardTransformM1NT(u,v) f(x,y)r(x,y,u,x0yThekernelr(x,y,u,v)issaidtobeSEPERABLEr(x,y,u,v)r1(x,u)r2(y,Inaddition,thekernelissaidtobeSYMMETRICr1(x,u)isfunctionallyequaltor2(y,v),sor(x,y,u,v)r1(x,u)1(y,TheKernelsfor2-DFourierTheforwardr(x,y,u,v)ej2(ux/Mvy/NWhere Theinverses(x,y,u,v)

ej2(ux/Mvy/N2-DFourierM1NT(u,v) f(x,y)ej2(ux/Mvy/Nx0yTAFA[ej2ux/M][image][ej2vy/Nf(x,y)

M1NT(u,v)ej2(ux/Mvy/Nu0 BTBBAFAB BF B F]图像 处Image ProbabilisticLetzi,i0,1,2,...,L-1,denotethevaluesofallpossibleintensitiesinanMNdigitalimage.Theprobability,p(zk),ofintensitylevelzkoccurringinagivenimageisestimatedp(zk)

wherenkisthenumberoftimesthatintensityp(zk)kThemean(average)intensityisgivenm zkp(zkk

occursinthe图像 处Image ProbabilisticThevarianceoftheintensitiesisgiven2 =(zkm)2p(zk2kThenthmomentoftheintensityvariablezun(z)=(zkk

m)np(zk图像 处Image Example:ComparisonofStandardDeviation

图像 处Image BackgroundmathematicsMatrixalgebra图像图像Image处Review:MatricesandSomeAnm×n(read"mbyn")matrix,denotedbyA,isarectangulararrayofentriesorelements(numbers,orsymbolsrepresentingnumbers)enclosedtypicallybysquarebrackets,wheremisthenumberofrowsandnthenumberofcolumns.图像Image图像Image处Review:MatricesandDefinitionsAissquareifm=Aisdiagonalifalloff-diagonalelementsare0,andnotalldiagonalelementsare0.Aistheidentitymatrix(I)ifitisdiagonalandalldiagonalelementsare1.Aisthezeroornullmatrix(0)ifallitselementsareThetraceofAequalsthesumoftheelementsalongitsmainTwomatricesAandBareequaliffthehavethesamenumberofrowsandcolumns,andaij=bij.图像Image图像Image处Review:MatricesandDefinitionsThetransposeATof

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论