赣州市重点中学2023届数学高一上期末考试试题含解析_第1页
赣州市重点中学2023届数学高一上期末考试试题含解析_第2页
赣州市重点中学2023届数学高一上期末考试试题含解析_第3页
赣州市重点中学2023届数学高一上期末考试试题含解析_第4页
赣州市重点中学2023届数学高一上期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.由直线上的点向圆作切线,则切线长的最小值为()A.1 B.C. D.32.函数的图像的一个对称中心是A. B.C. D.3.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或4.已知,,则在方向上的投影为()A. B.C. D.5.已知函数的部分图象如图所示,若函数的图象由的图象向右平移个单位长度得到,则()A. B.C. D.6.已知函数,且,,,则的值A.恒为正 B.恒为负C.恒为0 D.无法确定7.已知,求的值()A. B.C. D.8.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则9.已知,都是正数,则下列命题为真命题的是()A.如果积等于定值,那么当时,和有最大值B.如果和等于定值,那么当时,积有最小值C.如果积等于定值,那么当时,和有最小值D.如果和等于定值,那么当时,积有最大值10.函数的零点所在的一个区间是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,为偶函数,则______12.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______13.设奇函数对任意的,,有,且,则的解集___________.14.若函数y=loga(2-ax)在[0,1]上单调递减,则a的取值范围是________15.若函数的图象过点,则函数的图象一定经过点________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某视频设备生产厂商计划引进一款新型器材用于产品生产,以提高整体效益.通过市场分析,每月需投入固定成本5000元,每月生产台该设备另需投入成本元,且,若每台设备售价1000元,且当月生产的视频设备该月内能全部售完.(1)求厂商由该设备所获的月利润关于月产量台的函数关系式;(利润=销售额-成本)(2)当月产量为多少台时,制造商由该设备所获得的月利润最大?并求出最大月利润.17.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程18.计算:(1);(2)若,求的值19.已知函数,该函数图象一条对称轴与其相邻的一个对称中心的距离为(1)求函数的对称轴和对称中心;(2)求在上的单调递增区间20.已知集合.(1)若,求a的值;(2)若且“”是“”的必要不充分条件,求实数a的取值范围.21.已知函数是偶函数.(1)求k的值;(2)设,若函数与的图象有且只有一个公共点,求实数a的取值范围.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】先求圆心到直线的距离,此时切线长最小,由勾股定理不难求解切线长的最小值【详解】切线长的最小值是当直线上的点与圆心距离最小时取得,圆心到直线的距离为,圆的半径为1,故切线长的最小值为,故选:B【点睛】本题考查圆的切线方程,点到直线的距离,是基础题2、C【解析】令,得,所以函数的图像的对称中心是,然后赋值即可【详解】因为的图像的对称中心为.由,得,所以函数的图像的对称中心是.令,得.【点睛】本题主要考查正切函数的对称性,属基础题3、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.4、A【解析】利用向量数量积的几何意义以及向量数量积的坐标表示即可求解.【详解】,,在方向上的投影为:.故选:A【点睛】本题考查了向量数量积的几何意义以及向量数量积的坐标表示,考查了基本运算求解能力,属于基础题.5、A【解析】结合图象利用五点法即可求得函数解析式.【详解】由图象可得解得,因为,所以.又因为,所以因为,所以,,即,.又因为,所以..故选:A.6、A【解析】根据题意可得函数是奇函数,且在上单调递增.然后由,可得,结合单调性可得,所以,以上三式两边分别相加后可得结论【详解】由题意得,当时,,于是同理当时,可得,又,所以函数是上的奇函数又根据函数单调性判定方法可得在上为增函数由,可得,所以,所以,以上三式两边分别相加可得,故选A.【点睛】本题考查函数奇偶性和单调性的判断及应用,考查函数性质的应用,具有一定的综合性和难度,解题的关键是结合题意得到函数的性质,然后根据单调性得到不等式,再根据不等式的知识得到所求7、A【解析】利用同角三角函数的基本关系,即可得到答案;【详解】,故选:A8、D【解析】,,故选D.考点:点线面的位置关系.9、D【解析】根据基本不等式计算求出和的最小值与积的最大值,进而依次判断选项即可.【详解】由题意知,,A:,则,当且仅当时取到等号,所以有最小值,故A错误;B:,则,当且仅当时取到等号,所以有最大值,故B错误;C:,则,当且仅当时取到等号,所以有最小值,故C错误;D:,则,有,当且仅当时取到等号,所以有最大值,故D正确;故选:D10、B【解析】判断函数的单调性,再借助零点存在性定理判断作答.【详解】函数在R上单调递增,而,,所以函数的零点所在区间为.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、4【解析】利用二次函数为偶函数的性质得一次项系数为0,定义域关于原点对称,即可求得的值.【详解】由题意得:解得:故答案为:.【点睛】本题考查二次函数的性质,考查逻辑推理能力和运算求解能力,求解时注意隐含条件的挖掘.12、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④13、【解析】可根据函数的单调性和奇偶性,结合和,分析出的正负情况,求解.【详解】对任意,,有故在上为减函数,由奇函数的对称性可知在上为减函数,则则,,,;,;,;,.故解集为:故答案为:【点睛】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性14、(1,2)【解析】分类讨论得到当时符合题意,再令在[0,1]上恒成立解出a的取值范围即可.【详解】令,当时,为减函数,为减函数,不合题意;当时,为增函数,为减函数,符合题意,需要在[0,1]上恒成立,当时,成立,当时,恒成立,即,综上.故答案为:(1,2).15、【解析】函数的图象可以看作的图象先关于轴对称,再向右平移4个单位得到,先求出关于轴的对称点,再向右平移4个单位即得.【详解】由题得,函数的图象先关于轴对称,再向右平移个单位得函数,点关于轴的对称点为,向右平移4个单位是,所以函数图象一定经过点.故答案为:.【点睛】本题主要考查函数的平移变换和对称变换,考查了分析能力,属于基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)当时,获得增加的利润最大,且增加的最大利润为4000元【解析】(1)分和时两种情况,利用利润=销售额-成本列式即可;(2)利用二次函数求时的最大值,利用基本不等式求时的最大值,取最大即可.【小问1详解】当时,;当时,【小问2详解】当时,,当时,当时,,当且仅当,即时,当时,获得增加的利润最大,且增加的最大利润为4000元17、(1);(2)【解析】(1)先求出与的交点,再利用两直线平行斜率相等求直线l(2)利用两直线垂直斜率乘积等于-1求直线l【详解】(1)由,得,∴与的交点为.设与直线平行的直线为,则,∴.∴所求直线方程为.(2)设与直线垂直的直线为,则,解得∴所求直线方程为.【点睛】两直线平行斜率相等,两直线垂直斜率乘积等于-118、(1)(2)【解析】(1)根据分数指数幂、对数的运算法则及换底公式计算可得;(2)根据换底公式的性质得到,再根据指数对数恒等式得到,即可得解;【小问1详解】解:【小问2详解】解:,,,19、(1)对称轴为,;,(2)和【解析】(1)先把化简成一个角的三角函数形式,再整体代换法去求的对称轴和对称中心;(2)整体代换法去求在上的单调递增区间即可.【小问1详解】由题可知,由对称轴与其相邻的一个对称中心的距离为,得,解得,所以令,即,所以的对称轴为,;令,即,所以的对称中心为,【小问2详解】令∵,∴,由图可知,只需满足或,即或,∴在上的单调递增区间是和20、(1)(2)【解析】(1)先求出集合B,再由题意可得从而可求出a的值,(2)由题意可得,从而有再结合可求出实数a的取值范围.【小问1详解】由题设知,∵,∴可得.【小问2详解】∵,∴,解得.∵“”是“”的必要不充分条件,∴.∴解得.因此,实数a的取值范围为.21、(1);(2).【解析】(1)根据偶函数得到,化简得到,解得答案.(2)化简得方程,设得到有且仅有一个正根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论