![福建省清流县第二中学2022年高一数学第一学期期末监测试题含解析_第1页](http://file4.renrendoc.com/view/2bd8a85cb421b62f081d8ce14cdb76f8/2bd8a85cb421b62f081d8ce14cdb76f81.gif)
![福建省清流县第二中学2022年高一数学第一学期期末监测试题含解析_第2页](http://file4.renrendoc.com/view/2bd8a85cb421b62f081d8ce14cdb76f8/2bd8a85cb421b62f081d8ce14cdb76f82.gif)
![福建省清流县第二中学2022年高一数学第一学期期末监测试题含解析_第3页](http://file4.renrendoc.com/view/2bd8a85cb421b62f081d8ce14cdb76f8/2bd8a85cb421b62f081d8ce14cdb76f83.gif)
![福建省清流县第二中学2022年高一数学第一学期期末监测试题含解析_第4页](http://file4.renrendoc.com/view/2bd8a85cb421b62f081d8ce14cdb76f8/2bd8a85cb421b62f081d8ce14cdb76f84.gif)
![福建省清流县第二中学2022年高一数学第一学期期末监测试题含解析_第5页](http://file4.renrendoc.com/view/2bd8a85cb421b62f081d8ce14cdb76f8/2bd8a85cb421b62f081d8ce14cdb76f85.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知集合和关系的韦恩图如下,则阴影部分所表示的集合为()A. B.C. D.2.已知函数的部分图象如图所示,则的解析式可能为()A. B.C. D.3.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.4.函数y=sin(2x)的单调增区间是()A.,](k∈Z) B.,](k∈Z)C.,](k∈Z) D.,](k∈Z)5.为了得到函数图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位6.已知幂函数是偶函数,则函数恒过定点A. B.C. D.7.已知,,,则,,大小关系为()A. B.C. D.8.已知,,则的值约为(精确到)()A. B.C. D.9.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限10.设,是两个不同的平面,,是两条不同的直线,且,A.若,则 B.若,则C.若,则 D.若,则11.为了得到函数的图象,只需将函数图象上所有的点A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度12.函数的图象如图所示,则函数的零点为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若,且,则的值为__________14.函数的值域是____________,单调递增区间是____________.15.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.16.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知角的终边经过点,,,求的值.18.已知函数的部分图象如图所示.(1)求的解析式;(2)若,求的最值以及取得最值时相应的的值.19.如图,在同一平面上,已知等腰直角三角形纸片的腰长为3,正方形纸片的边长为1,其中B、C、D三点在同一水平线上依次排列.把正方形纸片向左平移a个单位,.设两张纸片重叠部分的面积为S.(1)求关于a的函数解析式;(2)若,求a的值.20.已知函数)的最大值为2(1)求m的值;(2)求使成立的x的取值集合;(3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值21.已知函数(1)求的单调递增区间;(2)画出在上的图象22.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整;函数的解析式为(直接写出结果即可);(2)根据表格中的数据作出一个周期的图象;(3)求函数在区间上最大值和最小值
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】首先判断出阴影部分表示,然后求得,再求得.【详解】依题意可知,,且阴影部分表示.,所以.故选:B【点睛】本小题主要考查根据韦恩图进行集合的运算,属于基础题.2、C【解析】根据奇偶性排除A和D,由排除B.【详解】由图可知,的图象关于原点对称,是奇函数,,,则函数,是偶函数,排除A和D.当时,恒成立,排除B.故选:C3、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.4、D【解析】先将自变量的系数变为正数,再由三角函数的单调性得出自变量所满足的不等式,求解即可得出所要的单调递增区间【详解】y=sin(2x)=﹣sin(2x)令,k∈Z解得,k∈Z函数的递增区间是,](k∈Z)故选D【点睛】本题考查正弦函数的单调性,求解本题的关键有二,一是将自变量的系数为为正,二是根据正弦函数的单调性得出相位满足的取值范围,解题时不要忘记引入的参数的取值范围即k∈Z5、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律的简单应用,属于基础题6、D【解析】根据幂函数和偶函数的定义可得的值,进而可求得过的定点.【详解】因为是幂函数,所以得或,又偶函数,所以,函数恒过定点.故选:.【点睛】本题主要考查的是幂函数和偶函数的定义,以及对数函数性质的应用,是基础题.7、C【解析】由对数的性质,分别确定的大致范围,即可得出结果.【详解】因为,所以,,所以,,,所以.故选:C.8、B【解析】利用对数的运算性质将化为和的形式,代入和的值即可得解.【详解】.故选:B9、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B10、A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质11、B【解析】根据诱导公式将函数变为正弦函数,再减去得到.【详解】函数又故将函数图像上的点向右平移个单位得到故答案为:B.【点睛】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.12、B【解析】根据函数的图象和零点的定义,即可得出答案.【详解】解:根据函数的图象,可知与轴的交点为,所以函数的零点为2.故选:B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】∵且,∴,∴,∴cosα+sinα=0,或cosα−sinα=(不合题意,舍去),∴,故答案为−1.14、①.②.【解析】先求二次函数值域,再根据指数函数单调性求函数值域;根据二次函数单调性与指数函数单调性以及复合函数单调性法则求函数增区间.【详解】因为,所以,即函数的值域是因为单调递减,在(1,+)上单调递减,因此函数的单调递增区间是(1,+).【点睛】本题考查复合函数值域与单调性,考查基本分析求解能力.15、【解析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:16、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、.【解析】利用三角函数的定义可得,进而可求,利用同角关系式可求,再利用两角和的正切公式即得.【详解】∵角的终边经过点,∴,,∵,,∴,,∴18、(1)(2)时,,时,【解析】(1)根据图像先确定,再根据周期确定,代入特殊点确定,即可得到函数解析式;(2)将作为一个整体,求出其取值范围,进而求得函数最值,以及相应的x的值.【小问1详解】由图知,,,即,得,所以,又,所以,,即,由得,所以.【小问2详解】由得,所以当,即时,,当,即时,.19、(1);(2)或.【解析】(1)讨论、、分别求对应的,进而写出函数解析式的分段形式.(2)根据(1)所得解析式,将代入求a值即可.【小问1详解】如下图,延长到上的,又,则,∴,当时,;当时,;当时,.综上,.小问2详解】由(1)知:在上,;在上,,整理得,解得(舍)或.综上,或时,.20、(1)(2)(3)【解析】(1)将函数解析式化简整理,然后求出最值,进而得到,即可求出结果;(2)结合正弦型函数图象,解三角不等式即可求出结果;(3)结合伸缩变换求出函数的解析式,进而求出零点,然后结合题意即可求出结果.【小问1详解】因为的最大值为1,所以的最大值为,依题意,,解得【小问2详解】由(1)知,由,得所以解得所以,使成立的x取值集合为【小问3详解】依题意,,因为是的一个零点,所以,所以所以,因为,所以,所以t的最大值为21、(1),(2)见解析【解析】(1)计算,得到答案.(2)计算函数值得到列表,再画出函数图像得到答案.【详解】(1)令,,得,即,.故的单调递增区间为,.(2)因为所以列表如下:0024002【点睛】本题考查了三角函数的单调性和图像,意在考查学生对于三角函数性质的灵活运用.22、(1)见解析;(2)详见解析;(3)当时,;当时,【解析】(1)由表中数据可以得到的值与函数周期,从而求出,进而求出,即可得到函数的解析式,利用函数解析式可将表中数据补充完整;(2)结合三角函数性质与表格
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度护理行业护士聘用合同标准模板
- 2025年度跨境电商货物代理运输服务合同
- 2025年度能源项目结算与碳排放交易合同
- 2025年度教育贷款合同范本及解读
- 2025年国际文化交流与合作项目合同
- 2025年度国际货物运输代理合同交底记录
- 2025年度供应链金融贷款合同范本参考
- 2025年度建筑工程劳务分包合同风险评估范本
- 2025年度工地施工设备租赁与维护合同
- 2025年度生态环境治理与修复合同
- 高三日语一轮复习日语助词「に」和「を」的全部用法课件
- 【化学】高中化学手写笔记
- 中国高血压防治指南-解读全篇
- 2024年监控安装合同范文6篇
- 2024年山东省高考政治试卷真题(含答案逐题解析)
- 烟叶复烤能源管理
- 应收账款管理
- 食品安全管理员考试题库298题(含标准答案)
- 执业医师资格考试《临床执业医师》 考前 押题试卷绝密1 答案
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- 2024年山东济宁初中学业水平考试地理试卷真题(含答案详解)
评论
0/150
提交评论