云南省西双版纳州勐海县一中2022年高一数学第一学期期末学业质量监测模拟试题含解析_第1页
云南省西双版纳州勐海县一中2022年高一数学第一学期期末学业质量监测模拟试题含解析_第2页
云南省西双版纳州勐海县一中2022年高一数学第一学期期末学业质量监测模拟试题含解析_第3页
云南省西双版纳州勐海县一中2022年高一数学第一学期期末学业质量监测模拟试题含解析_第4页
云南省西双版纳州勐海县一中2022年高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.函数的零点所在的大致区间是A. B.C. D.2.若函数是偶函数,函数是奇函数,则()A.函数是奇函数 B.函数是偶函数C.函数是偶函数 D.函数是奇函数3.若函数在区间上存在零点,则实数的取值范围是A. B.C. D.4.三条直线l1:ax+by-1=0,l2:2x+(a+2)y+1=0,l3:bx-2y+1=0,若l1,l2都和l3垂直,则a+b等于()A. B.6C.或6 D.0或45.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④6.已知函数的定义域为,且满足对任意,有,则函数()A. B.C. D.7.已知幂函数在上是增函数,则n的值为()A. B.1C. D.1和8.已知函数,则()A.-1 B.2C.1 D.59.设,,,则、、的大小关系是()A. B.C. D.10.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或11.设命题:,则的否定为()A. B.C. D.12.已知函数,则()A.3 B.2C.1 D.0二、填空题(本大题共4小题,共20分)13.已知函数,则使函数有零点的实数的取值范围是____________14.已知幂函数的图象过点______15.计算_____________.16.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.三、解答题(本大题共6小题,共70分)17.已知函数是定义在上的偶函数,当时,(1)求的解析式;(2)解不等式18.已知函数是奇函数,且.(1)求函数的解析式,并判定函数在区间上的单调性(无需证明);(2)已知函数且,已知在的最大值为2,求的值.19.已知函数为偶函数(1)求实数的值;(2)记集合,,判断与的关系;(3)当时,若函数值域为,求的值.20.已知函数fx=ax+b⋅a-x((1)判断函数fx(2)判断函数fx在0,+(3)若fm-3不大于b⋅f2,直接写出实数条件①:a>1,b=1;条件②:0<a<1,b=-1.注:如果选择条件①和条件②分别解答,按第一个解答计分.21.脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?附:在中,其中为样本平均值.22.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题2、C【解析】根据奇偶性的定义判断即可;【详解】解:因为函数是偶函数,函数是奇函数,所以、,对于A:令,则,故是非奇非偶函数,故A错误;对于B:令,则,故为奇函数,故B错误;对于C:令,则,故为偶函数,故C正确;对于D:令,则,故为偶函数,故D错误;故选:C3、C【解析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围【详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题4、C【解析】根据相互垂直的两直线斜率之间的关系对b分类讨论即可得出【详解】l1,l2都和l3垂直,①若b=0,则a+2=0,解得a=﹣2,∴a+b=﹣2②若b≠0,则1,1,联立解得a=2,b=4,∴a+b=6综上可得:a+b的值为﹣2或6故选C【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论方法,考查了推理能力与计算能力,属于基础题5、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题6、C【解析】根据已知不等式可以判断函数的单调性,再结合四个选项进行判断即可.【详解】因为,所以由,构造新函数,因此有,所以函数是增函数.A:,因为,所以不符合增函数的性质,故本选项不符合题意;B:,当时,函数单调递减,故本选项不符合题意;C:,显然符合题意;D:,因为,所以不符合增函数的性质,故本选项不符合题意,故选:C7、C【解析】利用幂函数的定义与单调性即可得解.【详解】因为函数是幂函数,所以解得:或当时,在上是增函数,符合题意.当时,在上是减函数,不符合题意.故选:C【点睛】易错点睛:本题主要考查了幂函数的定义及性质,利用幂函数的定义知其系数为1,解方程即可,一定要验证是否符合在上是增函数的条件,考查了学生的运算求解的能力,属于基础题.8、A【解析】求分段函数的函数值,将自变量代入相应的函数解析式可得结果.【详解】∵在这个范围之内,∴故选:A.【点睛】本题考查分段函数求函数值的问题,考查运算求解能力,是简单题.9、B【解析】利用指数函数、对数函数的单调性比较、、三个数与、的大小关系,由此可得出、、的大小关系.【详解】,即,,,因此,.故选:B.10、A【解析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.11、B【解析】本题根据题意直接写出命题的否定即可.【详解】解:因为命题:,所以的否定:,故选:B【点睛】本题考查含有一个量词的命题的否定,是基础题.12、B【解析】先求值,再计算即可.【详解】,,故选:B点睛】本题主要考查了分段函数求函数值,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】令,进而作出的图象,然后通过数形结合求得答案.【详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.14、3【解析】利用幂函数的定义先求出其解析式,进而得出答案【详解】设幂函数为常数,幂函数的图象过点,,解得故答案为3【点睛】本题考查幂函数的定义,正确理解幂函数的定义是解题的关键15、【解析】将所给式子通分后进行三角变换可得结果【详解】由题意得故答案为:【点睛】易错点睛:本题考查三角恒等化简,本题的关键是通分后用正弦的差角公式,在由化成时注意角的顺序,这是容易出错的地方,考查运算能力,属于中档题.16、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1)利用偶函数的定义可求得函数在上的解析式,综合可得出函数的解析式;(2)令,则所求不等式可变为,求出的取值范围,可得出关于的不等式,解之即可.【小问1详解】解:因为数是定义在R上的偶函数,当,,则当时,,.因此,对任意的,.【小问2详解】解:由(1)得,所以不等式,即,令,则,于是,解得,所以,得或,从而不等式的解集为18、(1);函数在区间上单调递减,在上单调递增(2)或【解析】(1)根据奇函数的性质及,即可得到方程组,求出、的值,即可得到函数解析式,再根据对勾函数的性质判断即可;(2)分和两种情况讨论,结合对数型复合函数的单调性计算可得;【小问1详解】解:函数的定义域为,是奇函数,且,且又.经检验,满足题意,故.当时,时等号成立,当时,单调递减;当时,单调递增.【小问2详解】解:①当时,是减函数,故当取得最小值时,且取得最大值2,而在区间上单调递增,所以在区间上最小值为,故的最大值是,所以.②当时,是增函数,故当取得最大值时,且取得最大值2,而在区间上单调递增,所以在区间上的最大值为,故的最大值是,所以.综上所述,或.19、(1);(2);(3).【解析】(1)由恒成立,可得恒成立,进而得实数的值;(2)化简集合,得;(3)先判定的单调性,再求出时的范围,与等价即可求出实数的值.试题解析:(1)为偶函数,.(2)由(1)可知:,当时,;当时,.,.(3).上单调递增,,为的两个根,又由题意可知:,且.考点:1、函数的奇偶性及值域;2、对数的运算.20、(1)答案见解析(2)答案见解析(3)答案见解析【解析】(1)定义域均为R,代入f-x化简可得出与fx的关系,从而判断奇偶性;(2)利用定义任取x1,x2∈0,+∞,且x1【小问1详解】解:选择条件①:a>1,函数fxfx的定义域为R,对任意x∈R,则-x∈R因为f-x所以函数fx是偶函数选择条件②:0<a<1,函数fxfx的定义域为R,对任意x∈R,则-x∈R因为f-x所以函数fx是奇函数【小问2详解】选择条件①:a>1,fx在0,任取x1,x2∈因为a>1,所以ax所以f==ax所以fx在0,选择条件②:0<a<1,fx在0,+∞任取x1,x因为0<a<1,所以ax所以f=ax所以fx在0,【小问3详解】选择条件①:a>1,实数m的取值范围是-5,选择条件②:0<a<1,实数m的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论