2023届内蒙古自治区五原县第一中学高一上数学期末质量跟踪监视模拟试题含解析_第1页
2023届内蒙古自治区五原县第一中学高一上数学期末质量跟踪监视模拟试题含解析_第2页
2023届内蒙古自治区五原县第一中学高一上数学期末质量跟踪监视模拟试题含解析_第3页
2023届内蒙古自治区五原县第一中学高一上数学期末质量跟踪监视模拟试题含解析_第4页
2023届内蒙古自治区五原县第一中学高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.下列不等式中成立的是()A.若,则 B.若,则C.若,则 D.若,则2.已知幂函数的图象过点,若,则实数的值为()A. B.C. D.43.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.74.已知向量,,,则A. B.C. D.5.,则A.1 B.2C.26 D.106.若直线与圆的两个交点关于直线对称,则,的直线分别为()A., B.,C., D.,7.下面四个不等式中不正确的为A. B.C. D.8.在平面直角坐标系中,角与角项点都在坐标原点,始边都与x轴的非负半轴重合,它们的终边关于y轴对称,若,则()A. B.C. D.9.含有三个实数的集合可表示为{a,,1},也可表示为{a2,a+b,0},则a2012+b2013的值为()A.0B.1C.-1D.±110.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型11.下列函数中,值域为的偶函数是A. B.C. D.12.若函数f(x)=2x+3x+a在区间(0,1)A.(-∞,-5)C.(0,5) D.(1,+二、填空题(本大题共4小题,共20分)13.函数的定义域为__________.14.已知函数(且)只有一个零点,则实数的取值范围为______15.已知函数.(1)若在上单调递减,则实数的取值范围是___________;(2)若的值域是,则实数的取值范围是___________.16.下列说法中,所有正确说法的序号是__________①终边落在轴上角的集合是;②函数图象一个对称中心是;③函数在第一象限是增函数;④为了得到函数的图象,只需把函数的图象向右平移个单位长度三、解答题(本大题共6小题,共70分)17.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本固定成本生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润销售收入总成本);(2)工厂生产多少台产品时,可使盈利最多?18.如图,在直四棱柱中,底面是边长为2的正方形,分别为线段,的中点.(1)求证:||平面;(2)四棱柱的外接球的表面积为,求异面直线与所成的角的大小.19.已知线段AB的端点A的坐标为,端点B是圆:上的动点.(1)求过A点且与圆相交时的弦长为的直线的方程(2)求线段AB中点M的轨迹方程,并说明它是什么图形20.已知集合A=x13≤log(1)求A,B;(2)求∁U(3)如果C=xx<a,且A∩C≠∅,求a21.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格(元)与时间(天)的函数关系是,日销售量(件)与时间(天)的函数关系是.(1)设该商品的日销售额为y元,请写出y与t的函数关系式;(商品的日销售额=该商品每件的销售价格×日销售量)(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大?22.已知函数的图像过点,且图象上与点最近的一个最低点是.(1)求的解析式;(2)求函数在区间上的取值范围.

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】A,如时,,所以该选项错误;BCD,利用作差法比较大小分析得解.【详解】A.若,则错误,如时,,所以该选项错误;B.若,则,所以该选项正确;C.若,则,所以该选项错误;D.若,则,所以该选项错误.故选:B2、D【解析】根据已知条件,推出,再根据,即可得出答案.【详解】由题意得:,解得,所以,解得:,故选:D【点睛】本题考查幂函数的解析式,属于基础题.3、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C4、D【解析】A项:利用向量的坐标运算以及向量共线的等价条件即可判断.B项:利用向量模的公式即可判断.C项:利用向量的坐标运算求出数量积即可比较大小.D项:利用向量加法的坐标运算即可判断.【详解】A选项:因为,,所以与不共线.B选项:,,显然,不正确.C选项:因为,所以,不正确;D选项:因为,所以,正确;答案为D.【点睛】主要考查向量加、减、数乘、数量积的坐标运算,还有向量模的公式以及向量共线的等价条件的运用.属于基础题.5、B【解析】根据题意,由函数的解析式可得,进而计算可得答案.【详解】根据题意,,则;故选B.【点睛】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.6、A【解析】由圆的对称性可得过圆的圆心且直线与直线垂直,从而可求出.【详解】因为直线与圆的两个交点关于直线对称,故直线与直线垂直,且直线过圆心,所以,,所以,.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.7、B【解析】A,利用三角函数线比较大小;B,取中间值1和这两个数比较;C,利用对数函数图象比较这两个数的大小;D,取中间值1和这两个数比较【详解】解:A,如图,利用三角函数线可知,所对的弧长为,,∴,A对;B,由于,B错;C,如图,,则,C对;D,,D对;故选:B【点睛】本题主要考查比较两个数的大小,考查三角函数线的作用,考查指对数式的大小,属于基础题8、A【解析】利用终边相同的角和诱导公式求解.【详解】因为角与角的终边关于y轴对称,所以,所以,故选:A9、B【解析】根据题意,由{a,,1}={a2,a+b,0}可得a=0或=0,又由的意义,则a≠0,必有=0,则b=0,则{a,0,1}={a2,a,0},则有a2=1,即a=1或a=-1,集合{a,0,1}中,a≠1,则必有a=-1,则a2012+b2013=(-1)2012+02013=1,故选B点睛:集合的三要素是:确定性、互异性和无序性,集合的表示常用的有三种形式:列举法,描述法,Venn图法.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.10、D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.11、D【解析】值域为的偶函数;值域为R的非奇非偶函数;值域为R的奇函数;值域为的偶函数.故选D12、B【解析】利用零点存在性定理知f(0)⋅f(1)<0,代入解不等式即可得解.【详解】函数f(x)=2x+3x+a由零点存在性定理知f(0)⋅f(1)<0,即1+a5+a<0所以实数a的取值范围是(-5,-1)故选:B二、填空题(本大题共4小题,共20分)13、【解析】解不等式即可得出函数的定义域.【详解】对于函数,有,解得.因此,函数的定义域为.故答案为:.14、或或【解析】∵函数(且)只有一个零点,∴∴当时,方程有唯一根2,适合题意当时,或显然符合题意的零点∴当时,当时,,即综上:实数的取值范围为或或故答案为或或点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解15、①.②.【解析】(1)分析可知内层函数在上为减函数,且对任意的,恒成立,由此可得出关于实数的不等式组,由此可解得实数的取值范围;(2)分析可知为二次函数值域的子集,分、两种情况讨论,可得出关于实数的不等式组,综合可得出实数的取值范围.【详解】(1)令,.当时,,该函数为常值函数,不合乎题意.所以,,内层函数的对称轴为直线,由于函数在上单调递减,且外层函数为增函数,故内层函数在上为减函数,且对任意的,恒成立,所以,,解得;(2)因为函数的值域是,则为二次函数值域的子集.当时,内层函数为,不合乎题意;当时,则有,解得.综上所述,实数的取值范围是.故答案为:(1);(2).16、②④【解析】当时,,终边不在轴上,①错误;因为,所以图象的一个对称中心是,②正确;函数的单调性相对区间而言,不能说在象限内单调,③错误;函数的图象向右平移个单位长度,得到的图象,④正确.故填②④三、解答题(本大题共6小题,共70分)17、(1)(2)当工厂生产百台时,可使赢利最大为万元【解析】(1)先求出,再根据求解;(2)先求出分段函数每一段的最大值,再比较即得解.【详解】解:(1)由题意得,(2)当时,函数递减,(万元)当时,函数,当时,有最大值为(万元)所以当工厂生产百台时,可使赢利最大为万元【点睛】本题主要考查函数的解析式的求法,考查分段函数的最值的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)见解析;(2)【解析】(1)连接BD1,由中位线定理证明EF∥D1B,由线面平行的判定定理证明EF∥平面ABC1D1;(2)由(1)和异面直线所成角的定义,得异面直线EF与BC所成的角是∠D1BC,由题意和球的表面积公式求出外接球的半径,由勾股定理求出侧棱AA1的长,由直四棱柱的结构特征和线面垂直的定义,判断出BC⊥CD1,在RT△CC1D1中求出tan∠D1BC,求出∠D1BC可得答案.试题解析:(1)连接,在中,分别为线段的中点,∴为中位线,∴,而面,面,∴平面.(2)由(1)知,故即为异面直线与所成的角.∵四棱柱的外接球的表面积为,∴四棱柱的外接球的半径,设,则,解得,在直四棱柱中,∵平面,平面,∴,在中,,∴,∴异面直线与所成的角为.19、(1)或;(2)点M的轨迹是以(4,2)为圆心,半径为1的圆.【解析】⑴设直线的斜率为,求得直线的方程,再根据与圆相交的弦长为,求得圆心到直线的距离,求出即可得到直线的方程;⑵设出的坐标,确定动点之间坐标的关系,利用在圆上,可得结论;解析:(1)根据题意设直线的斜率为k,则直线的方程为,且与圆相交的弦长为,所以圆心到直线的距离为解得所以直线的方程为或(2)设∵M是线段AB的中点,又A(4,3)∴得又在圆上,则满足圆的方程∴整理得为点M的轨迹方程,点M的轨迹是以(4,2)为圆心,半径为1的圆点睛:本题考查了直线与圆的位置关系,并求出点的轨迹方程,在计算轨迹问题时的方法:用未知点坐标表示已知点坐标,然后代入原解析式即可求出关于动点的轨迹方程20、(1)A=2,8,(2)∁(3)2,+∞【解析】(1)根据函数y=log8x和函数y=(2)先求出集合A与集合B的交集,再求补集即可(3)根据集合∁和集合A的交集为空集,可直接求出a的取值范围【小问1详解】根据题意,可得:log8813≤log故有:A=函数y=2x在区间-∞,+∞综上,答案为:A=2,8,【小问2详解】由(1)可知:A=2,8,则有:A∩B=故有:∁故答案为:-∞,2【小问3详解】由于A=x2≤x≤8,且A∩C≠∅则有:a>2,故a的取值范围为:2,+∞故答案为:2,+∞21、(1);(2)日销售金额的最大值为900元,11月10日日销售金额最大【解析】(1)由日销售金额=每件的销售价格×日销售量可得;(2)利用二次函数的图像与性质可得结果.【详解】(1)设日销售额为元,则,所以即:(2)当时,,;当时,,故所求日销售金额的最大值为元,11月10日日销售金额最大.【点睛】本题主要考查了利用数学知识解决实际问题的能力,解题的关键是要把实际问题转化为数学问题,利用数学中二次函数的知识进行求解函数的最值.22、(1);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论