5电力系统中的优化问题简解析课件_第1页
5电力系统中的优化问题简解析课件_第2页
5电力系统中的优化问题简解析课件_第3页
5电力系统中的优化问题简解析课件_第4页
5电力系统中的优化问题简解析课件_第5页
已阅读5页,还剩195页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电力系统中的优化问题王秀丽电力系统中的优化问题王秀丽11.我国电力工业的发展历程1.我国电力工业的发展历程25电力系统中的优化问题简解析课件32.电力工业的现状1998年底(中国)装机容量277.3GW

年发电量1157.7TWh

1998年底(中国)人均装机0.22kW

人均电量927kWh1998年底(美国)装机容量824.2GW

年发电量3652.1TWh

列世界第80位后为世界平均水平1/3;为发达国家平均水平的1/6—1/102.电力工业的现状4中国电力工业的基本情况截至2004年底全国发电装机4.407亿千瓦。220kV及以上输电线路长度达226776km,变电设备容量达到70186MVA。2005年达到5亿千瓦2006年底装机容量622GW,年发电量2834.4TWh

水电:128.6GW(20.67%)火电:484.1GW(77.82%)中国电力工业的基本情况截至2004年底2005年达到5亿千瓦5截至2007年底,全国发电装机容量达到71329万千瓦,同比增长14.36%。水电装机14526万千瓦,占20.36%火电装机55442万千瓦,占77.73%核电装机885万千瓦,同比增长29.2%并网生产风电容量403万千瓦,同比增长94.4%。2007年全社会用电量32458亿千瓦时

截至2007年底,全国发电装机容量达到71329万千瓦,同比6装机容量增长19491.85GW1987100GW1995200GW2000300GW2004400GW2005500GW2006600GW2007700GW装机容量增长19491.85GW1987100GW199527我国输电系统的发展1949年以前,东北丰满、水丰等水电站的154~220kV输电线组成了当时中国最大的电网。此后220kV输电工程逐步在各地形成省级和跨省级电网。1972年建成的330kV刘天关输变电工程。1981年建成了第一个500kV输变电工程——平武工程(595kV)。随后,华中、东北、华北、华东4个跨省500kV电网和西北330kV跨省电网逐步形成。1989年±500kV葛洲坝—上海直流输电工程的建成,首次实现两大区的联网。2005年7月,随着西北-华中背靠背直流工程的投运,我国大区电网间实现了互联。2005年9月,我国第一个750kV输变电工程正式投入运行,标志着我国电网技术又迈上一个新的台阶。今后10~20年我国大区电网间互联将进一步加强,并逐步形成以特高压交流(1000kV)和特高压直流(±800kV)为骨干网架的国家电网。我国输电系统的发展1949年以前,东北丰满、水丰等水电站的8水能资源分布

水资源总量约28000亿m3,居世界第六位水能资源总理论蕴藏量为5.92万亿kWh/a,居世界第一位经济可开发资源为:装机容量2.9亿kW,多年平均年发电量1.26万亿kWh特点有:资源量大;分布很不均匀,70%以上的水能资源集中在西南地区

水能资源分布水资源总量约28000亿m3,居世界第六位9

中国的水利资源分布闽、浙赣

1416湘西

791南盘江红水河

1312乌江

867黄河北干流

609大渡河

1805雅砻江

1940金沙江

4789长江上游

2831澜沧江

2137黄河黑?

龙?江鸭绿江辽河第二

?松花

江河黄河淮洪泽湖江长富春江闽江

鄱阳湖赣江汉水清江洞庭湖资水沅水澧水乌江长江岷江大渡河雅砻江

金沙江黄河大通河青海湖洛河渭河南?江盘红

水河北江东江澜沧江怒江雅鲁藏布江通天河塔里木河车尔臣河孔雀河葛洲坝271。5隔河岩

120三峡1768天生桥

120天生桥

132岩滩

120漫湾

125二滩

330龙羊峡

128李家峡

200刘家峡

116白山

150滦河水电基地Hydropowerbases东北1131黄河上游

1415全国可开发水利资源的82.9%分布在四川、云南、湖北、青海、贵州和广西等省(区)

10煤炭资源分布

煤炭总资源量为2.6万亿吨,煤炭资源居世界第三位特点:煤炭资源分布面广,但分布很不均匀新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占1.6%,华东七省占2.8%,江南九省占1.6%煤炭资源分布煤炭总资源量为2.6万亿吨,煤炭资源居世界第三115电力系统中的优化问题简解析课件12XinjiangTibetNortheastNorthNorthwestchuanyuCentralEastSouth全国煤炭储量的80%分布在华北和西北地区负荷中心却在东部及沿海经济发达地区XinjiangTibetNortheastNorthNor13北部通道送电容量:2005年,7GW2010年,18GW2020年,40GW中部通道送电容量:2005年,7GW2010年,21.8GW2020年,40-45GW南部通道送电容量:2005年,10.88GW2010年,15GW2020年,25GW北部通道中部通道南部通道14石油资源分布

陆上和沿海大陆架沉积盆地总面积约550万km2,石油总资源量预测为940亿吨

1996年底中国石油探明储量约32.87亿吨,居世界第九位石油资源主要分布于东北、华北、西北地区,其中松辽盆地、渤海湾盆地、塔里木盆地、准噶尔盆地占石油资源量的52.6%石油资源分布陆上和沿海大陆架沉积盆地总面积约550万km215天然气资源分布我国天然气地质资源量估计超过38万亿立方米,预计可采储量7-10万亿立方米陆上资源主要集中在四川盆地、陕甘宁地区、塔里木盆地和青海,中部地区和西部地区的天然气资源量超过全国总量的一半海上资源集中在南海和东海

天然气资源分布我国天然气地质资源量估计超过38万亿立方米,预16世界与中国一次能源比例关系

煤炭石油天然气水电和核电世界平均水平27%40%23%10%世界可采年限2304868

中国78.31%17.64%2.1%1.95%中国可采年限902295

世界与中国一次能源比例关系

煤炭石油天然气水电和核电世界平17风能资源分布

我国10m高度层的风能资源总储量为32.26亿kW,其中实际可开发利用的风能资源储量为2.53亿kW如果年利用小时按2000~2500h计,风电的年发量可达5060~6325亿kWh风能资源的分布主要集中在东南沿海及其岛屿以及内蒙、甘肃、新疆一带区域风能资源分布我国10m高度层的风能资源总储量为32.26亿18风力发电有三种运行方式:独立运行方式:一台小型风力发电机向一户或几户提供电力,它用蓄电池蓄能,以保证无风时的用电风力发电与其他发电方式(如柴油机发电)相结合,向一个单位或一个村庄或一个海岛供电风力发电并入常规电网运行,向大电网提供电力,常常是一处风电场安装几十台甚至几百台风力发电机,这是风力发电的主要发展方向。风力发电有三种运行方式:19世界风能全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。到2007年底,全球风力发电的累计装机容量已达9410万千瓦,比上年的7410万千瓦增加27%。风能在国际能源领域所扮演的角色已从“补充能源”向“战略替代能源”方向发展。世界风能全球的风能约为2.74×109MW,其中可利用的风能20各国风电装机容量排在前列的国家依次是:德国(20621兆瓦)西班牙(11615兆瓦)美国(11603兆瓦)印度(6270兆瓦)丹麦(3136兆瓦)。各国风电装机容量排在前列的国家依次是:21

序号风电场名称装机台数装机容量(kW)1新疆达坂城风电二厂1971128002宁夏贺兰风电场1321122003内蒙古辉腾锡勒风电场94685004广东南澳风电场128563905河北承德风电场88537006甘肃玉门风电场74522007广东惠来石碑山风电场87522008内蒙古克旗达里风电场7313609内蒙古克旗赛罕坝风电场735136010吉林洮北青山风电场584930011山东长岛风电场594475012新疆达坂城风电一厂693570013河北尚义满井风电场233450014辽宁仙人岛风电场483266015福建六鳌风电场363060016吉林通榆风电场493006017新疆达板城三场203000018黑龙江富锦风电场272430019辽宁东岗风电场3822450我国主要风电场

序号风电场名称装机台数装机容量(kW)1新疆达坂城风电二厂2220辽宁海洋红风电场282100021浙江括苍山风电场331980022广东汕尾红海湾风电场251650023上海南汇风电场111650024山东即墨凤山风电场151640025吉林洮南风电场191615026黑龙江伊春大青山风电场191615027福建南日岛风电场191615028浙江苍南风电场261435029广东惠来海湾石风电场221320030山东栖霞风电场191220031黑龙江木兰风电场201200032辽宁康平风电场121020033辽宁彰武风电场121020034河北张北风电场24985035辽宁法库风电场12960036吉林长岭风电场11935037河北张北满井风电场6900038海南东方风电场19875539辽宁横山风电场24740040内蒙古朱日和风电场32690020辽宁海洋红风电场282100021浙江括苍山风电场3312341福建平潭风电场10600042福建东山风电场10600043山东荣成风电场4600044黑龙江穆棱十文字风电场4490045内蒙古锡林风电场13478046上海崇明风电场3450047吉林富裕风电场6450048辽宁锦州风电场5375049内蒙古商都风电场12360050辽宁小长山风电场6360051辽宁大长山风电场6360052上海奉贤风电场4340053辽宁獐子岛风电场12300054广东深圳大梅沙风电场8200055新疆阿拉山口风电场2120056河北丰宁风电场2120057新疆布尔津风电场7105058香港南丫岛风电场180059宁夏红碴子风电场17541福建平潭风电场10600042福建东山风电场10600024主要内容电力系统优化问题通用模型无功优化输电网规划机组组合配电网重构主要内容电力系统优化问题通用模型251电力系统优化问题通用模型通用的数学模型可以表示如下:Obj.

min

s.t.

=0

0

(1-1)

其中,

为目标函数,u为控制变量,x为状态变量,

分别为等式约束和不等式约束类。

1电力系统优化问题通用模型通用的数学模型可以表示如下:Obj26优化算法数学优化算法线性规划、整数规划、混合整数规划、模糊规划、灰色理论、等等启发式算法进化算法遗传算法、模拟退火、蚁群算法、TS搜索算法、专家系统优化算法数学优化算法271.1遗传算法原理(1)遗传算法(geneticalgorithms)是在70年代初期由美国密执根大学的holland教授发展起来的。1975年,holland发表了第一本比较系统的遗传算法的专著《adaptationinnaturalandartificialsystems》。近年来,随着遗传算法基本原理、方法及其应用技巧的深入研究,遗传算法在电力系统的经济运行、电网规划、网络分割、故障诊断、潮流计算、电力系统控制等方面已经大量成功应用,并且应用范围越来越广泛。1.1遗传算法原理(1)遗传算法(geneticalgor28遗传算法原理(2)遗传算法主要借用生物进化中自然选择、适者生存的规律,是建立在自然选择和群体遗传学基础上的搜索方法。Holland的基因模式理论使用二进制串模拟的人工染色体来表示某一优化问题的可行解,用随机方法产生一个可行解的集合,按照自然选择的原理,即群体中人工染色体的适应度越高则它将获得繁殖后代的机会越大,运用定义的各种算子如交叉、变异等模拟进化,使整个群体不断优化并最终找到问题的全局最优解。遗传算法原理(2)遗传算法主要借用生物进化中自然选择、适29

遗传算法的关键因素:编码适应度函数遗传算子生殖交叉变异遗传算法原理(3)

遗传算法的关键因素:遗传算法原理(3)

30

遗传算法原理(4)——编码

编码是应用遗传算法时要解决的首要问题,编码方法除了决定个体染色体的排列形式外,也决定了个体从搜索空间的基因型变换到解空间的表现型的解码方法,同时编码方法也影响到运算方法。

目前大多采用二进制的编码,已经出现网格编码(gridcoding)、浮点编码(floatingcoding)、嵌入编码(embeddedcoding)等方法。采取何种方式的编码,基本的原则就是应采用易于产生与所求问题相关的且具有低阶、短定义长度模式的编码方案。

遗传算法原理(4)——编码

编码是应用遗传算法时要31

遗传算法原理(5)——适应度函数

个体的适应度函数值可由目标函数,值按一定的转换规则求得,对于求最大化问题,作如下转换:(3-15)

遗传算法原理(5)——适应度函数

个体的适应度函数32

遗传算法原理(6)——适应度函数

对于求最小化问题,作如下转换:(3-16)

遗传算法原理(6)——适应度函数

对于求最小化问题,作如下33

遗传算法原理(7)——遗传算子遗传算法主要有三个算子:选择、交叉和变异算子。选择:一般采用转轮法选择即比例选择的方法,目前随着对算法的深入研究和实践,已经相继提出了竞争选择(tournamentselection)、排序选择(rankingselection)、稳态选择(steady-stateelection)。交叉:目前最常用的是单点交叉、两点交叉(two-pointcrossover)、多点交叉(multi-pointcrossover)、均匀交叉(uniformcrossover)。变异:变异运算的目的是改善局部搜索能力,防止出现早熟的现象。但变异的概率不能选取的太大,否则就退化为完全的随机搜索。目前主要有固定概率变异、变概率变异以及预测变异。

遗传算法原理(7)——遗传算子遗传算法主要有三个算子:选择34算例:求X2在0-31之间的最大值用二进制表示。X要由5位数表示X=a1×24+a2×23+a3×22+a4×21+a5×20

算例:求X2在0-31之间的最大值用二进制表示。X要由5位35N=0形成初始染色体群串染色体Xf(x)=X2

选中概率101101131690.141211000245760.4923010008640.060410011193610.311合计1170平均293最大值576N=0形成初始染色体群串染色体Xf(x)=X2选中概率36每串被选中的概率每串被选中的概率37N=1串染色体父本杂交号杂交位置新串Xf(x)=X2101101—2—14011001214421100041100125625311000—4—33110112772941001131000016256合计1754平均439最大值729N=1串染色体父本杂交号杂交位置新串Xf(x)=X2101138显然,经过一次遗传操作,目标函数就有了很大改进。

若将上式第3串第3位进行变异操作,则我们将获得最优解。显然,经过一次遗传操作,目标函数就有了很大改进。

若将上式39遗传算法的特点对参数的编码进行优化,比较灵活从一群点上进行搜索,避免了局部最优问题寻优直接用适应函数,无须求导。计算简单,适应面广,可以求解多峰的,非线性的,离散的优化问题。寻优是指导性,不同于枚举法,避免了维数灾难问题。遗传算法的特点对参数的编码进行优化,比较灵活40问题!有时会出现收敛速度慢不能判断是否已求出了最优解问题!有时会出现收敛速度慢412.无功优化(1)对无功优化问题而言,目标函数可以是网损最小、电压质量最好、补偿容量最小、投资最少或者综合经济效益最好等等,也可以是上述几种目的的综合;约束条件一般为变量的取值范围,主要有等式约束和不等式约束两大类。2.无功优化(1)对无功优化问题而言,目标函数可以是网损最42无功优化(2)单一目标函数优化模型多目标函数优化模型电力市场下的优化模型动态优化模型无功优化算法无功优化控制目前存在的问题无功优化(2)单一目标函数优化模型432.1单一目标函数优化模型

单一目标函数模型包括:

网损最小电压偏离规定值最小费用最小增广函数

2.1单一目标函数优化模型单一目标函数模型包括442.1.1网损最小minF=Obj.

s.t.

=0

(2-2)

(2-1)

(2-3)

(2-4)

其中,

T为选取分接头可调变压器变比,C为补偿电容器容量,P,Q分别为节点注入有功无功功率,V为节点电压,Vg为发电机端电压。(2-2)式为潮流方程约束,(2-3)式为控制变量约束,(2-4)式为状态变量约束。2.1.1网损最小minF=Obj.s.t.=0452.1.2电压偏离规定值最小Obj.

min

f

=

(2-5)

约束条件仍然由等式和不等式两类组成,即为(2-2)-(2-4)式。上式目标函数中,n为除平衡节点外节点的总数,

为节点给定的电压,

为节点电压给定的

最大偏移量。

2.1.2电压偏离规定值最小Obj.minf=(462.1.3费用最小Obj.

minf=

(2-6)

约束条件为(2-2)-(2-4)的等式和不等式约束两类。

式(2-6)中,Ur为新增感性无功设备容量向量,Uc为新增容性无功设备容量向量,Z为运行控制变量。CI为建设费用,Co为运行费用。2.1.3费用最小Obj.minf=(2-6)472.1.4增广函数

无功优化的多个目标,一般地可以用一个增广函数给出:

Obj.minF=+(2-7)

其中,

为加权因子,

为第i项函数指标,为罚因子,为罚函数。

约束条件同上述模型。2.1.4增广函数无功优化的多个目标,一般地可以482.2多目标函数优化模型(1)因为无功优化可以从多个角度考虑,所以很自然地出现了多目标优化的模型。鉴于此问题的复杂性和多目标优化求解的困难,一般最多从两个方面结合。通常以电压偏离最小和网损最小来同时考虑。

2.2多目标函数优化模型(1)因为无功优化可以492.2多目标函数优化模型(2)

Obj.1

目标函数是最小化网损和最小化电压偏差,各个具体的变量意义与上面两种方法相同。约束条件和前述模型中相同。

minf1=(2-8)

Obj.2

minf2=(2-9)

2.2多目标函数优化模型(2)Obj.1502.3电力市场下的优化模型Obj.

minC=目标函数C代表系统发电总成本,NG为发电机节点总数,NC为具有无功补偿器的节点总数,

为节点i有功发电

成本函数,

为节点i无功发电

成本函数,为节点j的无功补偿器运行成本函数。

(2-10)

2.3电力市场下的优化模型Obj.minC=目标函数C代51

动态优化模型以电容器投切和有载调压分接头的调节为控制手段,考虑了动态负荷模型、各种整数约束和实际可调节的最大次数约束,以全天网损最小为目标函数:

2.4动态优化模型(1)

minC=Obj.s.t.

(2-11)

动态优化模型以电容器投切和有载调压分接头的调节为522.4动态优化模型(2)

V=[V1,V2,V3,…,V24]T,代表24个时段内的各线电压矩阵。Vi为时段i内的n维母线电压行矢;

式(2-11)

中:Q=[Q1,Q2,Q3,…,Q24]T,代表24个时段内的各电容器组的容量矩阵。Qi为时段i内的m维容量值矢量;Bc是一个m维的对角线矩阵,其对角元为相应电容器组的单台容量;

K=[K1,K2,K3,…,K24]T,Ki为时段i内的电容器组投运台数,是一个m维的行矢量,各分量都为整数;Sc代表24h内各电容器组的总动作次数,是一个m维的矢量;St代表24h内各变压器的分接头总调节次数,是一个l维矢量。2.4动态优化模型(2)V=[V1,V2,V3,…,532.5无功优化算法传统的无功优化算法:

梯度类算法,牛顿法,二次规划法和线性规划法人工智能算法:

模拟退火法,遗传算法,禁忌搜索算法,蚁群算法

2.5无功优化算法传统的无功优化算法:542.5.1经典的无功算法比较2.5.1经典的无功算法比较552.5.2人工智能算法在无功优化应用中的比较2.5.2人工智能算法在无功优化应用中的比较562.6无功优化控制目前存在的问题人们对于无功优化做了很多研究,根据不同的条件,提出各种各样的算法,但是现在的电力系统对实时无功优化控制提出的要求较为苛刻,它涉及到:实时的响应速度起动点的鲁棒性不可行性的探测和处理控制变量的平滑有效调节数据质量的要求外部网络的等值现有的算法都不能很好的满足这些要求。2.6无功优化控制目前存在的问题人们对于无功优化做573输电网规划

单阶段输电网规划模型多阶段电网规划模型3输电网规划58输电网规划输电网规划的目标是在负荷预测及电源布局已知的情况下,确定在何时、何地投资建设何种类型输电线路以满足经济、可靠的输送电力要求。

规划方案最终体现为规划水平年的负荷及电源分布状况的分层分区,发电厂、变电站的出线数目及供电区之间的联络线数目,确定采用紧凑或松散型的网络结构以及采用何种主接线。输电网规划输电网规划的目标是在负荷预测及电源布局已知593.2单阶段电网规划模型

Obj.minf=L1[u(x)]+L2[u(x)]s.t.(3-1)

式中,f为总费用,u(x)为采用的网络接线方案,U(x)为可行方案集。

L1[u(x)]为对应于方案u(x)的网络投资,包括线路投资、相应的变电设备投资等等;

L2[u(x)]为对应于方案u(x)的网络运行费用,包括设备(线路和相应的变电设备等)运行维护费用、网络损耗费用、与网络接线有关的经济运行费用等等。3.2单阶段电网规划模型Obj.minf=L603.2.1染色体编码电网规划问题与染色体之间的编码和解码非常方便,首先将各待选线路按其两端节点自然排序,然后按此顺序将每条待选线路作为染色体中的一个基因,当基因值为1时,表示相应的待选线路被选中加入网络;反之,当基因值为0时,表示相应的待选线路没有被选中,染色体的长度应等于待选线路数,每个染色体则表示一个扩建方案,例如:当某网络有6条待选线路且染色体为{101010}时,说时该方案是第1,3,5条待选线路被选中加入系统。3.2.1染色体编码电网规划问题与染色体之间的编码和解码非常613.2.2适应度函数适应度函数应反映电网规划的目标和要求,即要使规划方案的总投资最小,潮流分布合理,并且不出现过负荷情况,规划出的方案能满足N-1检验,同时网络不出现解列现象。3.2.2适应度函数适应度函数应反映电网规划的目标和要求62体现这些约束条件的方法是:如果某方案正常运行时存在过负荷情况,则可将过负荷量乘以惩罚系数转化为费用;同理,如果网络N-1检验时出现过负荷或解列现象,也分别将N-1出现的过负荷总量乘以相应的惩罚系数转化为费用,或将由于解列造成的不能满足负荷需求的功率缺额总量乘以相应的惩罚系数转化为费用。体现这些约束条件的方法是:如果某方案正常运行时存在过负荷情况63其中C为总费用,为染色体的第i位基因,表示相应的线路是否加入网络。Ci为待选线路的投资,K为待选线路总数。Pen1为选取的正常时的过负荷惩罚系数,W1为网络正常时的过负荷总量。Pen2为选取的网络不满足N-1检验时的惩罚系数,W2为网络N-1检验时的过负荷总量。Pen3为网络出现解列时的惩罚系数,W3为网络出现解列造成的不能满足负荷需求的功率缺额总量。其中C为总费用,为染色体的第i位基因,表示相应的64电网规划的目标函数是最小费用问题,而遗传算法通常要求目标函数最大化,因此用给定的大数减去来构造适应度函数。适应度函数的表达式为:电网规划的目标函数是最小费用问题,而遗传算法通常要求目标函65

第1框:包括输入原有线路和待选线路的参数,各节点的发电出力及负荷大小;还包括遗传算法所需的参数,如最大迭代次数Ngen,染色体域的大小Npop,交叉率Pc,变异率Pm;另外还需输入一些选择参数,如惩罚系数等。第2框:形成第一代染色体,以50%的概率随机地选择一些待选线路加入系统,形成Npop个长度为待选线路总数的染色体。第3框:检验各染色体对应的网络是否存在解列现象,如果存在解列现象则对网络进行修正。修正的方法是寻找一条投资最省的有效线路加入网络,使网络连通。3.2.3算法流程第1框:包括输入原有线路和待选线路的参数,各节点的发电出力66第4框:对前一代Npop个染色体进行选择、交叉、变异操作,形成新一代Npop个染色体。第5框:检验各染色体对应的网络是否存在解列现象,如果存在解列现象则对网络进行修正。网络连通后,计算投资费用和罚函数,以便下一步计算染色体的适应度函数值。第6框:计算各染色体的适应度函数值,按照适应度函数值,由大到小排序。第7框:按某一比例保留若干个优良品种,即从当代染色体域中选出若干个适应度函数值最高的染色体做为优良品种,直接遗传到下一代。第4框:对前一代Npop个染色体进行选择、交叉、变异操作,形67第8框:对那些接近最优的方案进行成对变异,以保留的优良品种是否已重复出现数次而无自然改善为依据进行成对变异的。第9框:判别是否已满足收敛条件,若满足收敛条件则转到第10框,否则返回第4框。以遗传若干代最优方案无自然改善作为收敛条件。第10框:输出结果,包括将所保留的优良品种解码还原成规划方案,给出各方案的费用等。第8框:对那些接近最优的方案进行成对变异,以保留的优良品种683.3多阶段电网规划

多阶段电网规划的任务是在已知规划水平年负荷预测和电源规划的基础上,根据现有网络接线方案和待选线路,确定在何时、何地投建何种类型的输电线路以满足运行要求且最经济的网络接线方案。该方案在整个规划期内投资费用和运行费用的贴现值之和最小。3.3多阶段电网规划

多阶段电网规划的任务是在已693.3.1多阶段电网规划模型(1)(3-14)其中,f:总费用的贴现值

r:贴现率

Np:规划阶段数

规划期初始到第k阶段末的总年数,y(i)为第i阶段包含的年数3.3.1多阶段电网规划模型(1)(3-14)其中,f:703.3.1多阶段电网规划模型(2)3.3.1多阶段电网规划模型(2)713.3.2多目标电网规划模型

——决策变量

多目标电网规划的决策变量可选为网络状态和网络扩展方案.(3-2)3.3.2多目标电网规划模型

——决策变量723.3.2多目标电网规划模型

——目标函数

以供应方开发成本(包括投资成本和运行成本)的贴现值最小和需求方缺电成本的贴现值最小为多目标电网规划问题的优化目标:(3-3)3.3.2多目标电网规划模型

——目标函数733.3.2多目标电网规划模型

——约束条件多目标电网规划的约束条件可概括为:(3-4)3.3.2多目标电网规划模型

——约束条件多目标电网规744.机组组合

机组最优投入问题是寻求1个周期内各个负荷水平下机组的最优组合方式及开停机计划,使运行费用为最小。它是一个高维数、非凸的、离散的、非线性的优化问题,很难找出理论上的最优解。但由于它能带来显著的经济效益,国内外很多学者一在积极研究,提出各种方法来解决该问题:如优先顺序法、动态规划法、整数规划和混合整数规划法、分支定界法、拉格朗日松弛法、系统进化算法、以及遗传算法等。目前,一类新兴的模拟生物群落行为的进化算法被引入到优化问题中,其中已经初步应用于电力系统的有蚂蚁算法和粒子群优化(PSO)算法。4.机组组合机组最优投入问题是寻求1个周期内各个负荷754.1机组组合的数学模型(1)目标函数通常是在满足各种约束条件下使总发电运行成本最低,即(4-1)式中:第一项为机组的发电费用,第二项为机组启动费用。:为机组的运行状态,其值为1表示运行,为0时表示停机I:可用机组数。T:调度时段数。:机组i在时段t的出力大小4.1机组组合的数学模型(1)目标函数通常是在满足764.1机组组合的数学模型(2)约束条件:

(4-2)式中,

1)系统负荷平衡约束:

表示时段t的系统负荷2)机组出力上下限:

(4-3)表示机组i的最大最小出力,3)系统备用:

(4-4):表示时段t系统备用的大小4.1机组组合的数学模型(2)约束条件:(4-2)式中,774.1机组组合的数学模型(3)(4-5)4)最短开机时间和停机时间约束:

表示机组i到t-1时段为止的持续开机时间和持续停机时间;

5)机组爬坡约束:

(4-7)分别表示机组I在相邻时段出容许的最大上升值和下降值(4-6)表示机组i容许的最短开机时间和最短停机时间限制;

(4-8)4.1机组组合的数学模型(3)(4-5)4)最短开机时间和784.2.2目标函数及约束的处理(1)1)机组开停状态变量的处理由式(4-1)知:机组运行费用实际上是出力和机组开停状态变量的函数。将状态变量的取值范围进行松弛,变为:并在目标函数中加入惩罚项,则最终的目标函数为:(4-11)(4-12)式(4-12)中,M为惩罚项,是一个很大的正数。4.2.2目标函数及约束的处理(1)1)机组开停状态变量的处794.2.2目标函数及约束的处理(2)2)机组开停时间约束的处理机组连续开机时间和连续停机时间是一个时间累加的过程。因此,开停机时间若机组处于停机状态,则(4-13)(4-15)上式中:可以表示为如下的递推公式:若机组处于开机状态,则(4-14)(4-16)T=1为第一时段,此时的机组开停状态已知,T0为每一时段的时间间隔。为罚值。4.2.2目标函数及约束的处理(2)2)机组开停时间约束的处805.配网重构(1)

降低配电网线损一直是电力企业努力的方向,西方主要工业国家的线损率大致在5%~8%,我国为9%左右,与发达国家相比尚有差距。35kV~110kV配电网线损是地区线损的重要组成部分,1995年全国城网110kV以下配电网线损占总线损的60%,可见降低配电网线损是降损工作的关键问题之一。5.配网重构(1)降低配电网线损一直是电力企815配网重构(2)网络重构的基本过程网络重构目标函数模型配网重构算法基于遗传模拟退火算法的配网重构5配网重构(2)825.1配网重构基本过程优化网络结构的基本步骤是:

识别网络拓扑,获得系统负荷数据;应用配网重构算法优化结构;检验约束条件;进行N-1安全性校验并决定方案。5.1配网重构基本过程优化网络结构的基本步骤是:835.2配网重构目标函数模型纯损耗模型负荷率中心距模型混和模型5.2配网重构目标函数模型纯损耗模型845.2.1纯损耗模型所谓纯损耗模型,仅以损耗为目标函数值,重构的目的是配网损失为最小,即:(5-1)式中:

nb为配电网中的支路数;

ri为第i条支路的电阻;

Ii为流过第i条支路的负荷电流。5.2.1纯损耗模型所谓纯损耗模型,仅以损耗为目855.2.2负荷率中心距模型

在进行城市配网规划时,由于当前电网容量普遍不足,增加配网规模就应该着重于尽可能地解决容量问题。若仍用损耗模型,就可能出现某些线路负荷较重,另一些又较轻的情况,这时再来重构以解决线路负荷吃紧的问题则为时已晚,可能得不到合适的运方,即使有,损耗也很大。为解决这个问题,采用负荷率中心距模型:(5-2)上式中:5.2.2负荷率中心距模型在进行城市配网规划时,由865.2.3混和模型所谓混和模型,就是目标函数中同时考虑损耗和负荷分配两个因素,即:(5-3)5.2.3混和模型所谓混和模型,就是目标函数中同875.3配网重构算法采用数学优化技术的配电网重构算法最优流模式算法开关交换算法基于人工智能的网络重构算法5.3配网重构算法采用数学优化技术的配电网重构算法885.3.1采用数学优化技术的配电网重构算法Merlin,Back等人利用数学规划方法来处理配电网重构问题,用分支定界法得出最佳配电网结构,此后许多学者尝试将数学优化理论应用于配电网重构中。Ji-YuanFan等人提出一次只开合一对开关的单环网优化问题,其数学模型为具有二次目标函数、0—1状态变量的非线性整数规划问题,用单纯形法求解。N.D.R.Sarma等人提出一种基于0—1整数规划的配电网重构算法,这种方法一次可以考虑多个开关操作,并可以得到全局最优解。K.Aoki等人忽略电压降落,将负荷当成恒定电流,用非线性规划技术来求解配电网重构问题。一般认为,利用数学优化理论可以得到不依赖于配电网初始结构的全局最优解,但已经证明,数学优化技术属于“贪婪”搜索算法,计算时间非常长。5.3.1采用数学优化技术的配电网重构算法Merlin,Ba895.3.2最优流模式算法(1)

——算法原理

最优流模式算法是由D.Shirmohammadi等人于1989年提出的一种启发式方法,它以功率损耗最小为目标函数,算法步骤的基本思想为:1将所有联络开关合上形成多环网;2只保留支路的电阻,在满足KVL和KCL条件下求得的电流分布就是系统的最优流模式;3打开在最优流模式下电流最小的开关,打开一个开关解开一个环路。重复步骤2和3,直到网络恢复为辐射状为止。5.3.2最优流模式算法(1)

——算法原理905.3.2最优流模式算法(2)

——流程图5.3.2最优流模式算法(2)

——流程图915.3.3开关交换算法(1)

——算法思想及优缺点该算法由S.Civanlar等人首先提出,首先计算初始潮流和网损,利用潮流计算的结果将负荷用恒定电流表示,每次只合上一个联络开关形成一个环网;选择环网中一个分段开关并打开,使配电网恢复为辐射网,从而实现负荷转移,达到负荷均衡和降低线损的目的。该算法有如下特点:1可以快速确定降低配电网线损的配电网结构;2通过启发式规则减少需要考虑的开关组合;3可以利用公式估算开关操作带来的线损变化。不足之处在于:1每次只能考虑一对开关的操作;2不能保证全局最优;3给出的配电网重构结果与配电网的初始结构有关。5.3.3开关交换算法(1)

——算法思想及优缺点该925.3.3开关交换算法(2)

——流程图5.3.3开关交换算法(2)

——流程图935.3.4基于人工智能的网络重构算法(1)近年来,许多学者将人工智能的理论和方法应用于电力系统的研究和生产实践中,其中用于配电网重构的方法主要有:模拟退火方法(simulatedannealing,缩写为SA)、人工神经网络(artificialneuralnetwork,缩写为ANN)、遗传算法(geneticalgorithm,缩写为GA)方法和模糊数学等。5.3.4基于人工智能的网络重构算法(1)近年来945.3.4基于人工智能的网络重构算法(2)

——基于SA的配电网重构算法流程5.3.4基于人工智能的网络重构算法(2)

——基于SA的配955.3.4基于人工智能的网络重构算法(2)

——基于ANN的配电网络重构算法流程5.3.4基于人工智能的网络重构算法(2)

——基于ANN的965.4基于遗传模拟退火算法的配网重构(1)

——目标函数以网损最小为目标函数的网络重构数学模型为:式中:

ΔPLi为第i段线路的有功损耗,kW;

N为线路总数量;

Ri为线段i的单位电阻,Ω;

Li为线段i的长度,km;

Pi为第i线路的有功潮流,kW;

Qi为第i线路的无功潮流,kvar;

Ui为第i线路的电压值,(5-4)5.4基于遗传模拟退火算法的配网重构(1)

——目标975.4基于遗传模拟退火算法的配网重构(2)

——约束条件

不等式约束包括电压降的约束、线路电流值约束、电源容量约束,即

Ui≥UiminIi≤IimaxSt≤Stmax式(5-5)-(5-7)中:Uimin为第i节点要求的最低工作电压值,kV;Iimax为第i线路导线型号对应的载流量值,A;St为第t个变电所的负荷值,kVA;Stmax为第t个变电所的供电能力,kVA。(5-6)(5-5)(5-7)5.4基于遗传模拟退火算法的配网重构(2)

——约束985.4基于遗传模拟退火算法的配网重构(3)

——算法流程

5.4基于遗传模拟退火算法的配网重构(3)

——算法流程

99谢谢!谢谢!100电力系统中的优化问题王秀丽电力系统中的优化问题王秀丽1011.我国电力工业的发展历程1.我国电力工业的发展历程1025电力系统中的优化问题简解析课件1032.电力工业的现状1998年底(中国)装机容量277.3GW

年发电量1157.7TWh

1998年底(中国)人均装机0.22kW

人均电量927kWh1998年底(美国)装机容量824.2GW

年发电量3652.1TWh

列世界第80位后为世界平均水平1/3;为发达国家平均水平的1/6—1/102.电力工业的现状104中国电力工业的基本情况截至2004年底全国发电装机4.407亿千瓦。220kV及以上输电线路长度达226776km,变电设备容量达到70186MVA。2005年达到5亿千瓦2006年底装机容量622GW,年发电量2834.4TWh

水电:128.6GW(20.67%)火电:484.1GW(77.82%)中国电力工业的基本情况截至2004年底2005年达到5亿千瓦105截至2007年底,全国发电装机容量达到71329万千瓦,同比增长14.36%。水电装机14526万千瓦,占20.36%火电装机55442万千瓦,占77.73%核电装机885万千瓦,同比增长29.2%并网生产风电容量403万千瓦,同比增长94.4%。2007年全社会用电量32458亿千瓦时

截至2007年底,全国发电装机容量达到71329万千瓦,同比106装机容量增长19491.85GW1987100GW1995200GW2000300GW2004400GW2005500GW2006600GW2007700GW装机容量增长19491.85GW1987100GW19952107我国输电系统的发展1949年以前,东北丰满、水丰等水电站的154~220kV输电线组成了当时中国最大的电网。此后220kV输电工程逐步在各地形成省级和跨省级电网。1972年建成的330kV刘天关输变电工程。1981年建成了第一个500kV输变电工程——平武工程(595kV)。随后,华中、东北、华北、华东4个跨省500kV电网和西北330kV跨省电网逐步形成。1989年±500kV葛洲坝—上海直流输电工程的建成,首次实现两大区的联网。2005年7月,随着西北-华中背靠背直流工程的投运,我国大区电网间实现了互联。2005年9月,我国第一个750kV输变电工程正式投入运行,标志着我国电网技术又迈上一个新的台阶。今后10~20年我国大区电网间互联将进一步加强,并逐步形成以特高压交流(1000kV)和特高压直流(±800kV)为骨干网架的国家电网。我国输电系统的发展1949年以前,东北丰满、水丰等水电站的108水能资源分布

水资源总量约28000亿m3,居世界第六位水能资源总理论蕴藏量为5.92万亿kWh/a,居世界第一位经济可开发资源为:装机容量2.9亿kW,多年平均年发电量1.26万亿kWh特点有:资源量大;分布很不均匀,70%以上的水能资源集中在西南地区

水能资源分布水资源总量约28000亿m3,居世界第六位109

中国的水利资源分布闽、浙赣

1416湘西

791南盘江红水河

1312乌江

867黄河北干流

609大渡河

1805雅砻江

1940金沙江

4789长江上游

2831澜沧江

2137黄河黑?

龙?江鸭绿江辽河第二

?松花

江河黄河淮洪泽湖江长富春江闽江

鄱阳湖赣江汉水清江洞庭湖资水沅水澧水乌江长江岷江大渡河雅砻江

金沙江黄河大通河青海湖洛河渭河南?江盘红

水河北江东江澜沧江怒江雅鲁藏布江通天河塔里木河车尔臣河孔雀河葛洲坝271。5隔河岩

120三峡1768天生桥

120天生桥

132岩滩

120漫湾

125二滩

330龙羊峡

128李家峡

200刘家峡

116白山

150滦河水电基地Hydropowerbases东北1131黄河上游

1415全国可开发水利资源的82.9%分布在四川、云南、湖北、青海、贵州和广西等省(区)

110煤炭资源分布

煤炭总资源量为2.6万亿吨,煤炭资源居世界第三位特点:煤炭资源分布面广,但分布很不均匀新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占1.6%,华东七省占2.8%,江南九省占1.6%煤炭资源分布煤炭总资源量为2.6万亿吨,煤炭资源居世界第三1115电力系统中的优化问题简解析课件112XinjiangTibetNortheastNorthNorthwestchuanyuCentralEastSouth全国煤炭储量的80%分布在华北和西北地区负荷中心却在东部及沿海经济发达地区XinjiangTibetNortheastNorthNor113北部通道送电容量:2005年,7GW2010年,18GW2020年,40GW中部通道送电容量:2005年,7GW2010年,21.8GW2020年,40-45GW南部通道送电容量:2005年,10.88GW2010年,15GW2020年,25GW北部通道中部通道南部通道114石油资源分布

陆上和沿海大陆架沉积盆地总面积约550万km2,石油总资源量预测为940亿吨

1996年底中国石油探明储量约32.87亿吨,居世界第九位石油资源主要分布于东北、华北、西北地区,其中松辽盆地、渤海湾盆地、塔里木盆地、准噶尔盆地占石油资源量的52.6%石油资源分布陆上和沿海大陆架沉积盆地总面积约550万km2115天然气资源分布我国天然气地质资源量估计超过38万亿立方米,预计可采储量7-10万亿立方米陆上资源主要集中在四川盆地、陕甘宁地区、塔里木盆地和青海,中部地区和西部地区的天然气资源量超过全国总量的一半海上资源集中在南海和东海

天然气资源分布我国天然气地质资源量估计超过38万亿立方米,预116世界与中国一次能源比例关系

煤炭石油天然气水电和核电世界平均水平27%40%23%10%世界可采年限2304868

中国78.31%17.64%2.1%1.95%中国可采年限902295

世界与中国一次能源比例关系

煤炭石油天然气水电和核电世界平117风能资源分布

我国10m高度层的风能资源总储量为32.26亿kW,其中实际可开发利用的风能资源储量为2.53亿kW如果年利用小时按2000~2500h计,风电的年发量可达5060~6325亿kWh风能资源的分布主要集中在东南沿海及其岛屿以及内蒙、甘肃、新疆一带区域风能资源分布我国10m高度层的风能资源总储量为32.26亿118风力发电有三种运行方式:独立运行方式:一台小型风力发电机向一户或几户提供电力,它用蓄电池蓄能,以保证无风时的用电风力发电与其他发电方式(如柴油机发电)相结合,向一个单位或一个村庄或一个海岛供电风力发电并入常规电网运行,向大电网提供电力,常常是一处风电场安装几十台甚至几百台风力发电机,这是风力发电的主要发展方向。风力发电有三种运行方式:119世界风能全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。到2007年底,全球风力发电的累计装机容量已达9410万千瓦,比上年的7410万千瓦增加27%。风能在国际能源领域所扮演的角色已从“补充能源”向“战略替代能源”方向发展。世界风能全球的风能约为2.74×109MW,其中可利用的风能120各国风电装机容量排在前列的国家依次是:德国(20621兆瓦)西班牙(11615兆瓦)美国(11603兆瓦)印度(6270兆瓦)丹麦(3136兆瓦)。各国风电装机容量排在前列的国家依次是:121

序号风电场名称装机台数装机容量(kW)1新疆达坂城风电二厂1971128002宁夏贺兰风电场1321122003内蒙古辉腾锡勒风电场94685004广东南澳风电场128563905河北承德风电场88537006甘肃玉门风电场74522007广东惠来石碑山风电场87522008内蒙古克旗达里风电场7313609内蒙古克旗赛罕坝风电场735136010吉林洮北青山风电场584930011山东长岛风电场594475012新疆达坂城风电一厂693570013河北尚义满井风电场233450014辽宁仙人岛风电场483266015福建六鳌风电场363060016吉林通榆风电场493006017新疆达板城三场203000018黑龙江富锦风电场272430019辽宁东岗风电场3822450我国主要风电场

序号风电场名称装机台数装机容量(kW)1新疆达坂城风电二厂12220辽宁海洋红风电场282100021浙江括苍山风电场331980022广东汕尾红海湾风电场251650023上海南汇风电场111650024山东即墨凤山风电场151640025吉林洮南风电场191615026黑龙江伊春大青山风电场191615027福建南日岛风电场191615028浙江苍南风电场261435029广东惠来海湾石风电场221320030山东栖霞风电场191220031黑龙江木兰风电场201200032辽宁康平风电场121020033辽宁彰武风电场121020034河北张北风电场24985035辽宁法库风电场12960036吉林长岭风电场11935037河北张北满井风电场6900038海南东方风电场19875539辽宁横山风电场24740040内蒙古朱日和风电场32690020辽宁海洋红风电场282100021浙江括苍山风电场33112341福建平潭风电场10600042福建东山风电场10600043山东荣成风电场4600044黑龙江穆棱十文字风电场4490045内蒙古锡林风电场13478046上海崇明风电场3450047吉林富裕风电场6450048辽宁锦州风电场5375049内蒙古商都风电场12360050辽宁小长山风电场6360051辽宁大长山风电场6360052上海奉贤风电场4340053辽宁獐子岛风电场12300054广东深圳大梅沙风电场8200055新疆阿拉山口风电场2120056河北丰宁风电场2120057新疆布尔津风电场7105058香港南丫岛风电场180059宁夏红碴子风电场17541福建平潭风电场10600042福建东山风电场106000124主要内容电力系统优化问题通用模型无功优化输电网规划机组组合配电网重构主要内容电力系统优化问题通用模型1251电力系统优化问题通用模型通用的数学模型可以表示如下:Obj.

min

s.t.

=0

0

(1-1)

其中,

为目标函数,u为控制变量,x为状态变量,

分别为等式约束和不等式约束类。

1电力系统优化问题通用模型通用的数学模型可以表示如下:Obj126优化算法数学优化算法线性规划、整数规划、混合整数规划、模糊规划、灰色理论、等等启发式算法进化算法遗传算法、模拟退火、蚁群算法、TS搜索算法、专家系统优化算法数学优化算法1271.1遗传算法原理(1)遗传算法(geneticalgorithms)是在70年代初期由美国密执根大学的holland教授发展起来的。1975年,holland发表了第一本比较系统的遗传算法的专著《adaptationinnaturalandartificialsystems》。近年来,随着遗传算法基本原理、方法及其应用技巧的深入研究,遗传算法在电力系统的经济运行、电网规划、网络分割、故障诊断、潮流计算、电力系统控制等方面已经大量成功应用,并且应用范围越来越广泛。1.1遗传算法原理(1)遗传算法(geneticalgor128遗传算法原理(2)遗传算法主要借用生物进化中自然选择、适者生存的规律,是建立在自然选择和群体遗传学基础上的搜索方法。Holland的基因模式理论使用二进制串模拟的人工染色体来表示某一优化问题的可行解,用随机方法产生一个可行解的集合,按照自然选择的原理,即群体中人工染色体的适应度越高则它将获得繁殖后代的机会越大,运用定义的各种算子如交叉、变异等模拟进化,使整个群体不断优化并最终找到问题的全局最优解。遗传算法原理(2)遗传算法主要借用生物进化中自然选择、适129

遗传算法的关键因素:编码适应度函数遗传算子生殖交叉变异遗传算法原理(3)

遗传算法的关键因素:遗传算法原理(3)

130

遗传算法原理(4)——编码

编码是应用遗传算法时要解决的首要问题,编码方法除了决定个体染色体的排列形式外,也决定了个体从搜索空间的基因型变换到解空间的表现型的解码方法,同时编码方法也影响到运算方法。

目前大多采用二进制的编码,已经出现网格编码(gridcoding)、浮点编码(floatingcoding)、嵌入编码(embeddedcoding)等方法。采取何种方式的编码,基本的原则就是应采用易于产生与所求问题相关的且具有低阶、短定义长度模式的编码方案。

遗传算法原理(4)——编码

编码是应用遗传算法时要131

遗传算法原理(5)——适应度函数

个体的适应度函数值可由目标函数,值按一定的转换规则求得,对于求最大化问题,作如下转换:(3-15)

遗传算法原理(5)——适应度函数

个体的适应度函数132

遗传算法原理(6)——适应度函数

对于求最小化问题,作如下转换:(3-16)

遗传算法原理(6)——适应度函数

对于求最小化问题,作如下133

遗传算法原理(7)——遗传算子遗传算法主要有三个算子:选择、交叉和变异算子。选择:一般采用转轮法选择即比例选择的方法,目前随着对算法的深入研究和实践,已经相继提出了竞争选择(tournamentselection)、排序选择(rankingselection)、稳态选择(steady-stateelection)。交叉:目前最常用的是单点交叉、两点交叉(two-pointcrossover)、多点交叉(multi-pointcrossover)、均匀交叉(uniformcrossover)。变异:变异运算的目的是改善局部搜索能力,防止出现早熟的现象。但变异的概率不能选取的太大,否则就退化为完全的随机搜索。目前主要有固定概率变异、变概率变异以及预测变异。

遗传算法原理(7)——遗传算子遗传算法主要有三个算子:选择134算例:求X2在0-31之间的最大值用二进制表示。X要由5位数表示X=a1×24+a2×23+a3×22+a4×21+a5×20

算例:求X2在0-31之间的最大值用二进制表示。X要由5位135N=0形成初始染色体群串染色体Xf(x)=X2

选中概率101101131690.141211000245760.4923010008640.060410011193610.311合计1170平均293最大值576N=0形成初始染色体群串染色体Xf(x)=X2选中概率136每串被选中的概率每串被选中的概率137N=1串染色体父本杂交号杂交位置新串Xf(x)=X2101101—2—14011001214421100041100125625311000—4—33110112772941001131000016256合计1754平均439最大值729N=1串染色体父本杂交号杂交位置新串Xf(x)=X21011138显然,经过一次遗传操作,目标函数就有了很大改进。

若将上式第3串第3位进行变异操作,则我们将获得最优解。显然,经过一次遗传操作,目标函数就有了很大改进。

若将上式139遗传算法的特点对参数的编码进行优化,比较灵活从一群点上进行搜索,避免了局部最优问题寻优直接用适应函数,无须求导。计算简单,适应面广,可以求解多峰的,非线性的,离散的优化问题。寻优是指导性,不同于枚举法,避免了维数灾难问题。遗传算法的特点对参数的编码进行优化,比较灵活140问题!有时会出现收敛速度慢

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论