




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ColleenBeaudoinForFCIT大学课件:parabolasGeometricdefinition:aconehasaplane intersectingit,crossingits verticalaxisAlgebraicdefinition:Allpointsthatareequidistantfromagivenline(thedirectrix)andafixedpointnotonthedirectrix(thefocus)Geometricdefinition:aconeyAnypointontheparabolaisequidistanttothefocusandthedirectrix.Example:PointA:d1=d1PointB:d2=d2AByAnypointontheparabolaisFocusVertexDirectrixAxisofSymmetryxyFocusxyOnevariableissquaredandoneisnot.(Howdoesthisdifferfromlinearequations?)Therearemanywaystheequationofaparabolacanbewritten.Wewillgetthequadraticpart(variablethatissquared)ontheleftoftheequalsignandthelinearpart(variableistothefirstpower)ontherightoftheequalsign.Equation: (x-h)2=c(y–k)
OR
(y-k)2=c(x–h)Onevariableissquaredandon(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:1.Putinstandardform(above)–squaredtermonleft2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:3.Plotthevertex(h,k)Notewhathappenstothesigns.4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.)(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus.7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)(x-h)2=c(y–k)OR(y-k)Exp.1:Graph(x-5)2=12(y–6)Tograph:1.Putinstandardform–squaredtermonleft Done2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft Upbecauseyisontherightand12ispositiveExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:3.Plotthevertex(h,k)Notewhathappenstothesigns. (5,6)4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.
(5,9):foundbymovingup3fromthevertex5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.) y=3:foundbymovingdown3fromthevertexExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus. L.R.=12withendpointsat(-1,9)&(11,9)7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)
x=5Exp.1:Graph(x-5)2=12(yVertex:(5,6)Focus:(5,9)Directrix:y=3L.R.:12Axis:x=5fVertex:(5,6)fExp.2:Graph(y+3)2=-4(x–2)Tograph:1.Putinstandardform Done2.Decidewhichwaytheparabolaopens.
Leftbecausexisontherightand4isnegative3.Plotthevertex(h,k) (2,-3)4.Plotthefocus: (1,-3):foundbymovingleft1fromthevertex5.Drawthedirectrix: x=3:foundbymovingright1fromthevertexExp.2:Graph(y+3)2=-4(xExp.2:Graph(y+3)2=-4(x–2)Tograph:6.Plottheendpointsofthelatusrectum L.R.=4withendpointsat(1,-1)&(1,-5)7.Sketchtheparabola8.Identifytheaxisofsymmetry. y=-3
Exp.2:Graph(y+3)2=-4(xVertex:(2,-3)Focus:(1,-3)Directrix:x=3L.R.:4Axis:y=-3fVertex:(2,-3)fWhat’sthefirststep?
Putinstandardform. y2-4y+1=x y2-4y+4=x-1+4Completethesquare.
(y–2)2=x+3
(y–2)2=1(x+3)Nowyoutrygraphingtheparabolaandlabelingalltheparts.What’sthefirststep?Giventhefollowinginformation,writetheequationoftheparabola.Vertexis(0,0)andFocusisat(0,2)GiventhefollowinginformatioHowcanyoutellthegraphofanequationwillbeaparabola?What’sthestandardformofaparabola?Whatarethestepsforgraphingaparabola?Whatarecommonerrorspeoplemakewhengraphingparabolas?HowcanyoutellthegraphofConicSectionStandardFormofEquationParabolaCircleEllipseHyperbolaConicSectionStandardFormof19ColleenBeaudoinForFCIT大学课件:parabolasGeometricdefinition:aconehasaplane intersectingit,crossingits verticalaxisAlgebraicdefinition:Allpointsthatareequidistantfromagivenline(thedirectrix)andafixedpointnotonthedirectrix(thefocus)Geometricdefinition:aconeyAnypointontheparabolaisequidistanttothefocusandthedirectrix.Example:PointA:d1=d1PointB:d2=d2AByAnypointontheparabolaisFocusVertexDirectrixAxisofSymmetryxyFocusxyOnevariableissquaredandoneisnot.(Howdoesthisdifferfromlinearequations?)Therearemanywaystheequationofaparabolacanbewritten.Wewillgetthequadraticpart(variablethatissquared)ontheleftoftheequalsignandthelinearpart(variableistothefirstpower)ontherightoftheequalsign.Equation: (x-h)2=c(y–k)
OR
(y-k)2=c(x–h)Onevariableissquaredandon(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:1.Putinstandardform(above)–squaredtermonleft2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:3.Plotthevertex(h,k)Notewhathappenstothesigns.4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.)(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus.7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)(x-h)2=c(y–k)OR(y-k)Exp.1:Graph(x-5)2=12(y–6)Tograph:1.Putinstandardform–squaredtermonleft Done2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft Upbecauseyisontherightand12ispositiveExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:3.Plotthevertex(h,k)Notewhathappenstothesigns. (5,6)4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.
(5,9):foundbymovingup3fromthevertex5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.) y=3:foundbymovingdown3fromthevertexExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus. L.R.=12withendpointsat(-1,9)&(11,9)7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)
x=5Exp.1:Graph(x-5)2=12(yVertex:(5,6)Focus:(5,9)Directrix:y=3L.R.:12Axis:x=5fVertex:(5,6)fExp.2:Graph(y+3)2=-4(x–2)Tograph:1.Putinstandardform Done2.Decidewhichwaytheparabolaopens.
Leftbecausexisontherightand4isnegative3.Plotthevertex(h,k) (2,-3)4.Plotthefocus: (1,-3):foundbymovingleft1fromthevertex5.Drawthedirectrix: x=3:foundbymovingright1fromthevertexExp.2:Graph(y+3)2=-4(xExp.2:Graph(y+3)2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届北京市门头沟区市级名校高三下学期第三次检测试题英语试题含解析
- 兴义民族师范学院《中国当代文学专题研究》2023-2024学年第一学期期末试卷
- 浙江省台州市温岭市2024-2025学年五年级数学第二学期期末质量跟踪监视试题含答案
- 江苏省常州市重点中学2024-2025学年高三下-第五次考试语文试题试卷含解析
- 湖北科技学院《中国社会平等问题》2023-2024学年第二学期期末试卷
- 仪陇县2025年六年级数学小升初摸底考试含解析
- 2025届江苏省淮安市淮安区初三期初考试物理试题试卷含解析
- 甘南市重点中学2025届初三下学期线上第一次周测化学试题含解析
- 湖北省黄石市白沙片区2025年初三下学期5月月考物理试题(A卷)含解析
- 武汉城市学院《行草创作(2)》2023-2024学年第一学期期末试卷
- 2025年全球创新生态系统的未来展望
- 艺术色彩解读
- 体育业务知识培训课件
- 《淞沪会战》课件
- 《社区共治共建共享研究的国内外文献综述》4300字
- 软件代码审计与测试作业指导书
- 上消化道出血护理疑难病例讨论记
- 城市轨道交通自动售票机
- 环境设计专业考察课程教学大纲
- 2024版互联网企业股东合作协议书范本3篇
- 企业环保知识培训课件
评论
0/150
提交评论