版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ColleenBeaudoinForFCIT大学课件:parabolasGeometricdefinition:aconehasaplane intersectingit,crossingits verticalaxisAlgebraicdefinition:Allpointsthatareequidistantfromagivenline(thedirectrix)andafixedpointnotonthedirectrix(thefocus)Geometricdefinition:aconeyAnypointontheparabolaisequidistanttothefocusandthedirectrix.Example:PointA:d1=d1PointB:d2=d2AByAnypointontheparabolaisFocusVertexDirectrixAxisofSymmetryxyFocusxyOnevariableissquaredandoneisnot.(Howdoesthisdifferfromlinearequations?)Therearemanywaystheequationofaparabolacanbewritten.Wewillgetthequadraticpart(variablethatissquared)ontheleftoftheequalsignandthelinearpart(variableistothefirstpower)ontherightoftheequalsign.Equation: (x-h)2=c(y–k)
OR
(y-k)2=c(x–h)Onevariableissquaredandon(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:1.Putinstandardform(above)–squaredtermonleft2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:3.Plotthevertex(h,k)Notewhathappenstothesigns.4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.)(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus.7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)(x-h)2=c(y–k)OR(y-k)Exp.1:Graph(x-5)2=12(y–6)Tograph:1.Putinstandardform–squaredtermonleft Done2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft Upbecauseyisontherightand12ispositiveExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:3.Plotthevertex(h,k)Notewhathappenstothesigns. (5,6)4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.
(5,9):foundbymovingup3fromthevertex5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.) y=3:foundbymovingdown3fromthevertexExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus. L.R.=12withendpointsat(-1,9)&(11,9)7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)
x=5Exp.1:Graph(x-5)2=12(yVertex:(5,6)Focus:(5,9)Directrix:y=3L.R.:12Axis:x=5fVertex:(5,6)fExp.2:Graph(y+3)2=-4(x–2)Tograph:1.Putinstandardform Done2.Decidewhichwaytheparabolaopens.
Leftbecausexisontherightand4isnegative3.Plotthevertex(h,k) (2,-3)4.Plotthefocus: (1,-3):foundbymovingleft1fromthevertex5.Drawthedirectrix: x=3:foundbymovingright1fromthevertexExp.2:Graph(y+3)2=-4(xExp.2:Graph(y+3)2=-4(x–2)Tograph:6.Plottheendpointsofthelatusrectum L.R.=4withendpointsat(1,-1)&(1,-5)7.Sketchtheparabola8.Identifytheaxisofsymmetry. y=-3
Exp.2:Graph(y+3)2=-4(xVertex:(2,-3)Focus:(1,-3)Directrix:x=3L.R.:4Axis:y=-3fVertex:(2,-3)fWhat’sthefirststep?
Putinstandardform. y2-4y+1=x y2-4y+4=x-1+4Completethesquare.
(y–2)2=x+3
(y–2)2=1(x+3)Nowyoutrygraphingtheparabolaandlabelingalltheparts.What’sthefirststep?Giventhefollowinginformation,writetheequationoftheparabola.Vertexis(0,0)andFocusisat(0,2)GiventhefollowinginformatioHowcanyoutellthegraphofanequationwillbeaparabola?What’sthestandardformofaparabola?Whatarethestepsforgraphingaparabola?Whatarecommonerrorspeoplemakewhengraphingparabolas?HowcanyoutellthegraphofConicSectionStandardFormofEquationParabolaCircleEllipseHyperbolaConicSectionStandardFormof19ColleenBeaudoinForFCIT大学课件:parabolasGeometricdefinition:aconehasaplane intersectingit,crossingits verticalaxisAlgebraicdefinition:Allpointsthatareequidistantfromagivenline(thedirectrix)andafixedpointnotonthedirectrix(thefocus)Geometricdefinition:aconeyAnypointontheparabolaisequidistanttothefocusandthedirectrix.Example:PointA:d1=d1PointB:d2=d2AByAnypointontheparabolaisFocusVertexDirectrixAxisofSymmetryxyFocusxyOnevariableissquaredandoneisnot.(Howdoesthisdifferfromlinearequations?)Therearemanywaystheequationofaparabolacanbewritten.Wewillgetthequadraticpart(variablethatissquared)ontheleftoftheequalsignandthelinearpart(variableistothefirstpower)ontherightoftheequalsign.Equation: (x-h)2=c(y–k)
OR
(y-k)2=c(x–h)Onevariableissquaredandon(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:1.Putinstandardform(above)–squaredtermonleft2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:3.Plotthevertex(h,k)Notewhathappenstothesigns.4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.)(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus.7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)(x-h)2=c(y–k)OR(y-k)Exp.1:Graph(x-5)2=12(y–6)Tograph:1.Putinstandardform–squaredtermonleft Done2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft Upbecauseyisontherightand12ispositiveExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:3.Plotthevertex(h,k)Notewhathappenstothesigns. (5,6)4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.
(5,9):foundbymovingup3fromthevertex5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.) y=3:foundbymovingdown3fromthevertexExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus. L.R.=12withendpointsat(-1,9)&(11,9)7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)
x=5Exp.1:Graph(x-5)2=12(yVertex:(5,6)Focus:(5,9)Directrix:y=3L.R.:12Axis:x=5fVertex:(5,6)fExp.2:Graph(y+3)2=-4(x–2)Tograph:1.Putinstandardform Done2.Decidewhichwaytheparabolaopens.
Leftbecausexisontherightand4isnegative3.Plotthevertex(h,k) (2,-3)4.Plotthefocus: (1,-3):foundbymovingleft1fromthevertex5.Drawthedirectrix: x=3:foundbymovingright1fromthevertexExp.2:Graph(y+3)2=-4(xExp.2:Graph(y+3)2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高标准综合性货物运输与购销合作合同版
- 二零二五版龙门吊设备定制设计与生产制造合同4篇
- 2025年度土地转让合同违约金及违约责任界定4篇
- 二零二五年度湿地公园除草与生态修复合同8篇
- 二零二五年度炊事员职业健康与聘用合同3篇
- 2025年度旅游度假区场地管理与旅游服务合同4篇
- 2025年度厨师团队聘用与餐饮品牌形象塑造合同4篇
- 2025年度旅游度假村场地租赁运营协议4篇
- 2025年铝合金工业管道系统设计与安装合同4篇
- 二零二五年度养老产业项目承包股东内部经营合同4篇
- GB/T 12723-2024单位产品能源消耗限额编制通则
- 2024年广东省深圳市中考英语试题含解析
- GB/T 16288-2024塑料制品的标志
- 麻风病防治知识课件
- 建筑工程施工图设计文件审查办法
- 干部职级晋升积分制管理办法
- 培训机构应急预案6篇
- 北师大版数学五年级上册口算专项练习
- 应急物资智能调配系统解决方案
- 2025年公务员考试时政专项测验100题及答案
- TSG ZF003-2011《爆破片装置安全技术监察规程》
评论
0/150
提交评论