版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TotalReviewofComputer-aidedDesignandManufacturing
TotalReviewofComputer-aided1ScoreAssessmentAttendance(10%)Rollcall5times(2markseachtime)courseerercises(15%)Courseexercises3times(5markseachtime)Termpaper(25%)Examination
(50%)2-houropenbookpaper(CAD90%plusCAM10%),CalculationproblemsandnounsexplainScoreAssessmentAttendance(102ExaminationMaterial
LecturenotesTutorialsandexercisesTeachingMaterial
(MECHANICALENGINEERINGCAD/CAM)
ReferencesbooksSurfacemodellingforCAD/CAM,Chapter1-5,7Geometricmodelling,chapter9-10.
TheCNCWorkshop(ver2),chapter1ExaminationMaterialLecturen3Chapter1:InstructionWhatisCAD/CAM/CAE/CAPP?
Howistherelationshipamongthem?)WhatistheHISTORYofCAD/CAM?HardwareandsoftwareofCAD/CAMsystem?WhatisGeometricModellinganditstypicalapplications?Chapter1:InstructionWhatis4Chapter2:CurvesFourcurvemodelsStandardpolynomial
curve
Ferguson
curve
Bezier
curve
B-spline
curveCurvefittingChapter2:CurvesFourcurvemo5PolynomialCurveModelsCurveSegmentDefinition:
Acubicpolynomialcurvemodel:
r
(u)=a
+bu
+cu2
+
du3
usedinrepresentingacurvesegmentisspecifiedbyits
endconditions,
e.g.,
(a)
4points
(P0,
P1,P2
and
P3)
or
(b) twoendpoints
P0
and
P1;
twoendtangents
t0
and
t1.P0P1P2P3Ingeneral,adegree-npolynomialcurvecanbeusedtofit(n+1)datapoints.
PolynomialCurveModelsCurveS6FergusonCurveModel
Constructingacurvesegment:JoiningtwoendpointsP0andP1;
Havingspecifiedendtangentst0andt1
i.e.,
P0=r(0); P1
=r(1);
t0=r’(0); t1=r’(1)
P1P0t1t0r(u)r(u)=UA=UMV
with0
u
1FergusonCurveModelConstruct7BezierCurveModel
with0
u
1
OnevaluatingtheBezierequationanditsderivativeatu=0,1
r(0)=V0r(1)=Vnr’(0)=n(V1–V0)r’(1)=n(Vn–Vn-1)
Bezierfoundafamilyoffunctionscalled
BernsteinPolynomials
thatsatisfytheseconditions:BezierCurveModelwith08BezierCurveModelCubic(n=3)BeziercurvemodelV0V1V2V3V3V2V1V0V2V1V0V3r(u)=(1–u)3
V0+3u(1–u)2
V1+3u2(1–u)V2+u3
V3
r(u)=
=UMR
r(0)=V0 r’(0)=3
(V1–V0)r(1)=V3
r’(1)=3
(V3–V2)
Theshapeofthecurveresemblesthatofthecontrolpolygon.BezierCurveModelCubic(n=39B-splineModel
with0
u
1
Ni,n(u)
=
TheprimaryfunctionB-splineModeldefinedbyn+1pointsViisgivenbytheWhereB-splineModelwith0u10B-splineModelQuadratic
uniformB-splinemodelwithcontrolpointsV0,V1,andV2
r(t)=
½
[t2
t1]
=U3
M3
P3
0≤t≤1
CubicuniformB-splinemodelwithcontrolpointsV0,V1,V2,andV3
r(t)=1/6
[u3
u2
u1]
=U4
M4
P4
0≤t≤1B-splineModelQuadraticunifor11ParametricContinuityCondition
Twocurvesegmentsra(u)andrb(u)
ra(1)=P1=rb(0)
(C0-continuous)
ra’(1)=t1=rb’(0)
(C1-continuous)
ra’’(1)=rb’’(0)
(C2-continuous)
Collectivelycalleda
parametricC2-condition.
Thecompositecurvetopassthrough
P0,P1,P2,andthetangentst0andt2areassumedtobe
given.Thus,theproblemhereistodeterminethe
unknownt1sothatthetwocurvesegmentsareC2-continuousatthecommonjoinP1.P0P1P2t2t0t1=?ra(u)rb(u)ParametricContinuityConditio12CubicSplineFitting(FergusonModel)
EmployingFergusoncurvemodel
ra(u)=UCSa
rb(u)=UCSb
with0u1
U=[u3
u2
u1]C=
Sa
=
[P0P1t0t1]T
Sb
=
[P1P2t1t2]TApplyingC2continuity:ra’’(1)=6P0–6P1+2t0+4t1rb’’(0)=
-6P1+6P2-4t1-2t2C0-continuityandC1-continuityalreadyappliedCubicSplineFitting(Ferguson13CubicSplineFitting(FergusonModel)ApplyingparametricC2-condition
t0+4t1+t2=3(P2–P0)
Now,considerconstructingaC2-continuouscurvepassingthroughasequenceof
n+1
(P0
toPn)
pointsEndtangents
t0
and
tn
aregiven,inadditiontothe
(n+1)
points{Pi
}.
(Howmanycurvesegments???)
Therearetotally
n
curvesegments.Foreachpairofneighbouringcurvesegments
ri-1(u)
and
ri(u),wehave
ti-1+4ti+ti+1=3(Pi+1–Pi-1)
fori=1,2,…,n–1
CubicSplineFitting(Ferguson14B-splineModelOnevaluatingthecubicB-spline(k=4) anditsderivativeatt=1,0,
r
(0)=[4V1+(V0+V2)]/6 r(1)=[4V2+(V1+V3)]/6
r’(0)=(V2–V0)/2 r’(1)=(V3–V1)/2B-splinecurvesandBeziercurveshavemanyadvantagesincommonControlpointsinfluencecurvesegmentshapeinapredictable,naturalway,makingthemgoodcandidatesforuseinaninteractivedesignenvironment.Bothtypesofcurveareaxisindependent,multivalued,andbothexhibittheconvexhullproperty.B-splinecurveshaveadvantagesoverBeziercurves:Localcontrolofcurveshape.Theabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve.V0V1V3V2B-splineModelOnevaluatingth15CubicSplineFittingEstimationofendtangents,t0andtnCircularendcondition
Polynomialendcondition
Freeendcondition
CubicSplineFittingEstimation16Chapter3:SurfacesFoursurfacepatchmodelsStandardpolynomial
surfacepatch
Ferguson
surfacepatch
Bezier
surfacepatch
B-spline
surfacepatch
ThreeSurfaceConstructionMethodsTheFMILLmethod
Fergusonfittingmethod
B-splinefittingmethodCurvedBoundaryInterpolatingSurfacePatchesChapter3:SurfacesFoursurfac17StandardPolynomialPatchModel
Consideravector-valuedpolynomialfunction
r(u,v)whosedegreesarecubicinbothuandvwithcoefficients
dijfor(ui,vj).Thatisabi-cubic(standard)polynomialpatchdefinedas
r(u,v)
=
with0
u,v
1
whichcanbeexpressedinamatrixformas
r(u,v)
=
UDVT
where,
U=[u3
u2
u1],V=[v3
v2
v1],
andthe
coefficientsmatrix
D=
StandardPolynomialPatchMode18FergusonSurfacePatchModelSolvingthe16linearequationsfortheunknowncoefficientsdij
givesusaFergusonpatchequation:
r(u,v)=UDVT=UCQCTVT for0
u,v
1
C=
Q=FergusonSurfacePatchModelSo19BezierSurfacePatchModel
r(u,v)==UMBMTVT
0
u,v
1
Where
M=
B=
ThematrixMiscalleda(cubic)Beziercoefficientmatrix,andB
iscalledaBeziercontrolpointnetwhichformsacharacteristicpolyhedron.BezierSurfacePatchModelr(20BezierSurfacePatchModelBezierpatchvs.FergusonPatch
ByevaluatingthecornerconditionsoftheBezierpatch, wehavethefollowingrelationships:
Atu=0,v=0,
r(0,0)=V00 s00=3(V10–V00) t00=3(V01–V00) x00=9(V00–V01
–V10+V11)BezierSurfacePatchModelBezi21B-splineSurfacePatchModelConsidera44arrayofcontrolvertices{Vij}.
r(u,v)=
=UNBNTVT
for0
u,v
1
N=
B-splineSurfacePatchModelCo22SurfaceConstructionMethodsItisdesiredtouselowdegree(usuallycubic)polynomialpatchmodeltoformacompositesurface.Threemethodstobeintroduced:TheFMILLmethod
Fergusonfittingmethod
B-splinefittingmethod
SurfaceConstructionMethodsIt23B-SplineSurfaceFittingComparisonbetweenFergusonfittingandB-splinefittingSamecompositesurfaceresultedWhenmakingfurtherchanges,localchangeforB-splinesurface,globalchangeforFergusonsurface.Question:Whenonecontrolpointischanged,howmanypatchesareaffected?B-SplineSurfaceFittingCompar24CurvedBoundaryInterpolatingSurfacePatches
Methodsofconstructingasurfacepatchinterpolatingtoasetofboundarycurves:Ruledsurfaces
Loftedsurfaces
Coonssurfaces
Twotypesofsweepsurfacepatches:Translationalsweeppatches
RotationalsweeppatchesCurvedBoundaryInterpolating25RuledSurfaces
Considertwoparametriccurves,
r0(u)andr1(u)with0
u
1(seefigure).Alinearblendingofthe2curvesdefinesasurfacepatchcalledaruledsurface
r
(u,
v)=r0(u)+v
(r1(u)-r0(u));0
u,v
1Avectorinthedirectionofr1(u)-r0(u)iscalledarulingvector
t(u).
RuledSurfacesConsidertwop26TranslationalSweepSurfacePatches
InputSummaryTwoparametricspacecurves,g(u)andd(v).
Atranslationalsweepsurfaceisdefinedbythe trajectoryofthecurveg(u)
sweptalongthesecondcurved(v).Themovingcurveg(u)iscalledagenerator
curveTheguidingcurved(v)iscalledadirector
curve
r(u,v)=g(u)+d(v)-d(0)0
u,v
1
r(u,v)g(u)TranslationalSweepSurfacePa27RotationalSweepSurfacePatches
Alsoknownas
surfaceofrevolution
Considerasectioncurves(u)onthex-zplane
s(u)=x(u)i+z(u)k=
(x(u),0,z(u))
Rotatethesectioncurves(u)aboutthez-axis,theresultingsweepsurfacecanbeexpressedasanparametricequationas:
r(u,)=(x(u)cos,x(u)sin,z(u))
r(u,)RotationalSweepSurfacePatch28Chapter4:SolidModellingTwosolidmodelrepresentationschemesGraph-basedmodel(B-reps)Booleanmodel(CSG)EulerFormulaChapter4:SolidModellingTwo29Graph-BasedModelsForsolidsrepresentedasplanar-facedpolyhedron,manysimplerepresentationschemesareavailable,e.g.,connectivitymatrixforpolyhedron.Connectivitymatrix(oradjacencymatrix):Abinarymatrix
0-elementindicatesnoconnectivityexists
1-elementsindicateconnectivityexistsbetweenthepairofelements (vertices,edges,orfaces).
Graph-BasedModelsForsolidsr30BooleanModelsThebinarytreeforthismodelTheleafnodesaretheprimitivesolids,withBooleanoperatorsateachinternalnodeandtheroot.Eachinternalnodecombinesthetwoobjectsimmediatelybelowitinthetree,and,ifnecessary,transformstheresultinreadinessforthenextoperation.
BooleanModelsThebinarytree31BasicConceptsofSolidModelEuler’slaw(orEuler’sformula)Foravalidsolid(polyhedron),thefollowingrelationshipmustbesatisfied:
V–E+F-(L–F)=2–2H
V=NumberofverticesE=NumberofedgesF=NumberoffacesL=NumberofedgeloopsH=Numberofthroughholes
Thisexpressioncanalsobere-writtenas:
V–E+F-
R=2–2H
WhereR=L–Fisthenumberofinterioredgeloops.
ExternaledgeloopInterioredgeloopBasicConceptsofSolidModelE32Chapter7:PartProgrammingandManufacturingWhatisCNC/NC?
Howabouttheircharacteristics?)WhatisCNC/MC/FMS/CIMS?
Howistherelationshipamongthem?)WhatisthebasicconstructionforNCprogramming?HowtodeterminethecocrdinatesystemsofNCmachinetools?WhatisRP/RE?
Howabouttheircharacteristics?)Chapter7:PartProgrammingan33TipYoushouldpreparesufficientmaterials.Youshouldbringyourscientificcalculator,notyouriPhone.Youmayneedaruler.
Alloftheseformthescopeoftestinthefinalexam.TipYoushouldpreparesufficie34ThefinaltipPractice,practice,andpractice…Thefinaltip35ThankyouWishyouforthebestgrades!Thankyou36TotalReviewofComputer-aidedDesignandManufacturing
TotalReviewofComputer-aided37ScoreAssessmentAttendance(10%)Rollcall5times(2markseachtime)courseerercises(15%)Courseexercises3times(5markseachtime)Termpaper(25%)Examination
(50%)2-houropenbookpaper(CAD90%plusCAM10%),CalculationproblemsandnounsexplainScoreAssessmentAttendance(1038ExaminationMaterial
LecturenotesTutorialsandexercisesTeachingMaterial
(MECHANICALENGINEERINGCAD/CAM)
ReferencesbooksSurfacemodellingforCAD/CAM,Chapter1-5,7Geometricmodelling,chapter9-10.
TheCNCWorkshop(ver2),chapter1ExaminationMaterialLecturen39Chapter1:InstructionWhatisCAD/CAM/CAE/CAPP?
Howistherelationshipamongthem?)WhatistheHISTORYofCAD/CAM?HardwareandsoftwareofCAD/CAMsystem?WhatisGeometricModellinganditstypicalapplications?Chapter1:InstructionWhatis40Chapter2:CurvesFourcurvemodelsStandardpolynomial
curve
Ferguson
curve
Bezier
curve
B-spline
curveCurvefittingChapter2:CurvesFourcurvemo41PolynomialCurveModelsCurveSegmentDefinition:
Acubicpolynomialcurvemodel:
r
(u)=a
+bu
+cu2
+
du3
usedinrepresentingacurvesegmentisspecifiedbyits
endconditions,
e.g.,
(a)
4points
(P0,
P1,P2
and
P3)
or
(b) twoendpoints
P0
and
P1;
twoendtangents
t0
and
t1.P0P1P2P3Ingeneral,adegree-npolynomialcurvecanbeusedtofit(n+1)datapoints.
PolynomialCurveModelsCurveS42FergusonCurveModel
Constructingacurvesegment:JoiningtwoendpointsP0andP1;
Havingspecifiedendtangentst0andt1
i.e.,
P0=r(0); P1
=r(1);
t0=r’(0); t1=r’(1)
P1P0t1t0r(u)r(u)=UA=UMV
with0
u
1FergusonCurveModelConstruct43BezierCurveModel
with0
u
1
OnevaluatingtheBezierequationanditsderivativeatu=0,1
r(0)=V0r(1)=Vnr’(0)=n(V1–V0)r’(1)=n(Vn–Vn-1)
Bezierfoundafamilyoffunctionscalled
BernsteinPolynomials
thatsatisfytheseconditions:BezierCurveModelwith044BezierCurveModelCubic(n=3)BeziercurvemodelV0V1V2V3V3V2V1V0V2V1V0V3r(u)=(1–u)3
V0+3u(1–u)2
V1+3u2(1–u)V2+u3
V3
r(u)=
=UMR
r(0)=V0 r’(0)=3
(V1–V0)r(1)=V3
r’(1)=3
(V3–V2)
Theshapeofthecurveresemblesthatofthecontrolpolygon.BezierCurveModelCubic(n=345B-splineModel
with0
u
1
Ni,n(u)
=
TheprimaryfunctionB-splineModeldefinedbyn+1pointsViisgivenbytheWhereB-splineModelwith0u46B-splineModelQuadratic
uniformB-splinemodelwithcontrolpointsV0,V1,andV2
r(t)=
½
[t2
t1]
=U3
M3
P3
0≤t≤1
CubicuniformB-splinemodelwithcontrolpointsV0,V1,V2,andV3
r(t)=1/6
[u3
u2
u1]
=U4
M4
P4
0≤t≤1B-splineModelQuadraticunifor47ParametricContinuityCondition
Twocurvesegmentsra(u)andrb(u)
ra(1)=P1=rb(0)
(C0-continuous)
ra’(1)=t1=rb’(0)
(C1-continuous)
ra’’(1)=rb’’(0)
(C2-continuous)
Collectivelycalleda
parametricC2-condition.
Thecompositecurvetopassthrough
P0,P1,P2,andthetangentst0andt2areassumedtobe
given.Thus,theproblemhereistodeterminethe
unknownt1sothatthetwocurvesegmentsareC2-continuousatthecommonjoinP1.P0P1P2t2t0t1=?ra(u)rb(u)ParametricContinuityConditio48CubicSplineFitting(FergusonModel)
EmployingFergusoncurvemodel
ra(u)=UCSa
rb(u)=UCSb
with0u1
U=[u3
u2
u1]C=
Sa
=
[P0P1t0t1]T
Sb
=
[P1P2t1t2]TApplyingC2continuity:ra’’(1)=6P0–6P1+2t0+4t1rb’’(0)=
-6P1+6P2-4t1-2t2C0-continuityandC1-continuityalreadyappliedCubicSplineFitting(Ferguson49CubicSplineFitting(FergusonModel)ApplyingparametricC2-condition
t0+4t1+t2=3(P2–P0)
Now,considerconstructingaC2-continuouscurvepassingthroughasequenceof
n+1
(P0
toPn)
pointsEndtangents
t0
and
tn
aregiven,inadditiontothe
(n+1)
points{Pi
}.
(Howmanycurvesegments???)
Therearetotally
n
curvesegments.Foreachpairofneighbouringcurvesegments
ri-1(u)
and
ri(u),wehave
ti-1+4ti+ti+1=3(Pi+1–Pi-1)
fori=1,2,…,n–1
CubicSplineFitting(Ferguson50B-splineModelOnevaluatingthecubicB-spline(k=4) anditsderivativeatt=1,0,
r
(0)=[4V1+(V0+V2)]/6 r(1)=[4V2+(V1+V3)]/6
r’(0)=(V2–V0)/2 r’(1)=(V3–V1)/2B-splinecurvesandBeziercurveshavemanyadvantagesincommonControlpointsinfluencecurvesegmentshapeinapredictable,naturalway,makingthemgoodcandidatesforuseinaninteractivedesignenvironment.Bothtypesofcurveareaxisindependent,multivalued,andbothexhibittheconvexhullproperty.B-splinecurveshaveadvantagesoverBeziercurves:Localcontrolofcurveshape.Theabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve.V0V1V3V2B-splineModelOnevaluatingth51CubicSplineFittingEstimationofendtangents,t0andtnCircularendcondition
Polynomialendcondition
Freeendcondition
CubicSplineFittingEstimation52Chapter3:SurfacesFoursurfacepatchmodelsStandardpolynomial
surfacepatch
Ferguson
surfacepatch
Bezier
surfacepatch
B-spline
surfacepatch
ThreeSurfaceConstructionMethodsTheFMILLmethod
Fergusonfittingmethod
B-splinefittingmethodCurvedBoundaryInterpolatingSurfacePatchesChapter3:SurfacesFoursurfac53StandardPolynomialPatchModel
Consideravector-valuedpolynomialfunction
r(u,v)whosedegreesarecubicinbothuandvwithcoefficients
dijfor(ui,vj).Thatisabi-cubic(standard)polynomialpatchdefinedas
r(u,v)
=
with0
u,v
1
whichcanbeexpressedinamatrixformas
r(u,v)
=
UDVT
where,
U=[u3
u2
u1],V=[v3
v2
v1],
andthe
coefficientsmatrix
D=
StandardPolynomialPatchMode54FergusonSurfacePatchModelSolvingthe16linearequationsfortheunknowncoefficientsdij
givesusaFergusonpatchequation:
r(u,v)=UDVT=UCQCTVT for0
u,v
1
C=
Q=FergusonSurfacePatchModelSo55BezierSurfacePatchModel
r(u,v)==UMBMTVT
0
u,v
1
Where
M=
B=
ThematrixMiscalleda(cubic)Beziercoefficientmatrix,andB
iscalledaBeziercontrolpointnetwhichformsacharacteristicpolyhedron.BezierSurfacePatchModelr(56BezierSurfacePatchModelBezierpatchvs.FergusonPatch
ByevaluatingthecornerconditionsoftheBezierpatch, wehavethefollowingrelationships:
Atu=0,v=0,
r(0,0)=V00 s00=3(V10–V00) t00=3(V01–V00) x00=9(V00–V01
–V10+V11)BezierSurfacePatchModelBezi57B-splineSurfacePatchModelConsidera44arrayofcontrolvertices{Vij}.
r(u,v)=
=UNBNTVT
for0
u,v
1
N=
B-splineSurfacePatchModelCo58SurfaceConstructionMethodsItisdesiredtouselowdegree(usuallycubic)polynomialpatchmodeltoformacompositesurface.Threemethodstobeintroduced:TheFMILLmethod
Fergusonfittingmethod
B-splinefittingmethod
SurfaceConstructionMethodsIt59B-SplineSurfaceFittingComparisonbetweenFergusonfittingandB-splinefittingSamecompositesurfaceresultedWhenmakingfurtherchanges,localchangeforB-splinesurface,globalchangeforFergusonsurface.Question:Whenonecontrolpointischanged,howmanypatchesareaffected?B-SplineSurfaceFittingCompar60CurvedBoundaryInterpolatingSurfacePatches
Methodsofconstructingasurfacepatchinterpolatingtoasetofboundarycurves:Ruledsurfaces
Loftedsurfaces
Coonssurfaces
Twotypesofsweepsurfacepatches:Translationalsweeppatches
RotationalsweeppatchesCurvedBoundaryInterpolating61RuledSurfaces
Considertwoparametriccurves,
r0(u)andr1(u)with0
u
1(seefigure).Alinearblendingofthe2curvesdefinesasurfacepatchcalledaruledsurface
r
(u,
v)=r0(u)+v
(r1(u)-r0(u));0
u,v
1Avectorinthedirectionofr1(u)-r0(u)iscalledarulingvector
t(u).
RuledSurfacesConsidertwop62TranslationalSweepSurfacePatches
InputSummaryTwoparametricspacecurves,g(u)andd(v).
Atranslationalsweepsurfaceisdefinedbythe trajectoryofthecurveg(u)
sweptalongthesecondcurved(v).Themovingcurveg(u)iscalledagenerator
curveTheguidingcurved(v)iscalledadirector
curve
r(u,v)=g(u)+d(v)-d(0)0
u,v
1
r(u,v)g(u)TranslationalSweepSurfacePa63RotationalSweepSurfacePatches
Alsoknownas
sur
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿山作业人员聘用合同样本
- 照明工程合同
- 2025广州塔新媒体网络数据监测系统及服务合同
- 冬季运动器材租赁协议合同
- 环保创新旅馆租赁合同
- 消防设备租赁合同
- 篮球场地租赁合同-火爆抢订
- 混音与分离课程设计
- 汽车租赁战略投资协议
- 建筑用电合同样本
- 2024年广东省深圳市33校联考中考英语一模试卷
- 新版标准日本语.中级单词
- 污水处理设备供货安装技术服务方案
- 2024至2030年中国炔草酯数据监测研究报告
- 预防性侵安全教育主题课件
- 校园及周边安全隐患排查情况登记表
- (新版)高级考评员职业技能鉴定考试题库(含答案)
- 医疗机构消防安全突出火灾风险和检查要点
- 项目农民工考勤管理制度
- 《宁夏闽宁镇:昔日干沙滩今日金沙滩》教案- 2023-2024学年高教版(2023)中职语文职业模块
- 碳排放监测员(高级)技能鉴定考试题及答案
评论
0/150
提交评论