重庆大学机自实验班计算机辅助设计与制造总复习课件_第1页
重庆大学机自实验班计算机辅助设计与制造总复习课件_第2页
重庆大学机自实验班计算机辅助设计与制造总复习课件_第3页
重庆大学机自实验班计算机辅助设计与制造总复习课件_第4页
重庆大学机自实验班计算机辅助设计与制造总复习课件_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TotalReviewofComputer-aidedDesignandManufacturing

TotalReviewofComputer-aided1ScoreAssessmentAttendance(10%)Rollcall5times(2markseachtime)courseerercises(15%)Courseexercises3times(5markseachtime)Termpaper(25%)Examination

(50%)2-houropenbookpaper(CAD90%plusCAM10%),CalculationproblemsandnounsexplainScoreAssessmentAttendance(102ExaminationMaterial

LecturenotesTutorialsandexercisesTeachingMaterial

(MECHANICALENGINEERINGCAD/CAM)

ReferencesbooksSurfacemodellingforCAD/CAM,Chapter1-5,7Geometricmodelling,chapter9-10.

TheCNCWorkshop(ver2),chapter1ExaminationMaterialLecturen3Chapter1:InstructionWhatisCAD/CAM/CAE/CAPP?

Howistherelationshipamongthem?)WhatistheHISTORYofCAD/CAM?HardwareandsoftwareofCAD/CAMsystem?WhatisGeometricModellinganditstypicalapplications?Chapter1:InstructionWhatis4Chapter2:CurvesFourcurvemodelsStandardpolynomial

curve

Ferguson

curve

Bezier

curve

B-spline

curveCurvefittingChapter2:CurvesFourcurvemo5PolynomialCurveModelsCurveSegmentDefinition:

Acubicpolynomialcurvemodel:

r

(u)=a

+bu

+cu2

+

du3

usedinrepresentingacurvesegmentisspecifiedbyits

endconditions,

e.g.,

(a)

4points

(P0,

P1,P2

and

P3)

or

(b) twoendpoints

P0

and

P1;

twoendtangents

t0

and

t1.P0P1P2P3Ingeneral,adegree-npolynomialcurvecanbeusedtofit(n+1)datapoints.

PolynomialCurveModelsCurveS6FergusonCurveModel

Constructingacurvesegment:JoiningtwoendpointsP0andP1;

Havingspecifiedendtangentst0andt1

i.e.,

P0=r(0); P1

=r(1);

t0=r’(0); t1=r’(1)

P1P0t1t0r(u)r(u)=UA=UMV

with0

u

1FergusonCurveModelConstruct7BezierCurveModel

with0

u

1

OnevaluatingtheBezierequationanditsderivativeatu=0,1

r(0)=V0r(1)=Vnr’(0)=n(V1–V0)r’(1)=n(Vn–Vn-1)

Bezierfoundafamilyoffunctionscalled

BernsteinPolynomials

thatsatisfytheseconditions:BezierCurveModelwith08BezierCurveModelCubic(n=3)BeziercurvemodelV0V1V2V3V3V2V1V0V2V1V0V3r(u)=(1–u)3

V0+3u(1–u)2

V1+3u2(1–u)V2+u3

V3

r(u)=

=UMR

r(0)=V0 r’(0)=3

(V1–V0)r(1)=V3

r’(1)=3

(V3–V2)

Theshapeofthecurveresemblesthatofthecontrolpolygon.BezierCurveModelCubic(n=39B-splineModel

with0

u

1

Ni,n(u)

=

TheprimaryfunctionB-splineModeldefinedbyn+1pointsViisgivenbytheWhereB-splineModelwith0u10B-splineModelQuadratic

uniformB-splinemodelwithcontrolpointsV0,V1,andV2

r(t)=

½

[t2

t1]

=U3

M3

P3

0≤t≤1

CubicuniformB-splinemodelwithcontrolpointsV0,V1,V2,andV3

r(t)=1/6

[u3

u2

u1]

=U4

M4

P4

0≤t≤1B-splineModelQuadraticunifor11ParametricContinuityCondition

Twocurvesegmentsra(u)andrb(u)

ra(1)=P1=rb(0)

(C0-continuous)

ra’(1)=t1=rb’(0)

(C1-continuous)

ra’’(1)=rb’’(0)

(C2-continuous)

Collectivelycalleda

parametricC2-condition.

Thecompositecurvetopassthrough

P0,P1,P2,andthetangentst0andt2areassumedtobe

given.Thus,theproblemhereistodeterminethe

unknownt1sothatthetwocurvesegmentsareC2-continuousatthecommonjoinP1.P0P1P2t2t0t1=?ra(u)rb(u)ParametricContinuityConditio12CubicSplineFitting(FergusonModel)

EmployingFergusoncurvemodel

ra(u)=UCSa

rb(u)=UCSb

with0u1

U=[u3

u2

u1]C=

Sa

=

[P0P1t0t1]T

Sb

=

[P1P2t1t2]TApplyingC2continuity:ra’’(1)=6P0–6P1+2t0+4t1rb’’(0)=

-6P1+6P2-4t1-2t2C0-continuityandC1-continuityalreadyappliedCubicSplineFitting(Ferguson13CubicSplineFitting(FergusonModel)ApplyingparametricC2-condition

t0+4t1+t2=3(P2–P0)

Now,considerconstructingaC2-continuouscurvepassingthroughasequenceof

n+1

(P0

toPn)

pointsEndtangents

t0

and

tn

aregiven,inadditiontothe

(n+1)

points{Pi

}.

(Howmanycurvesegments???)

Therearetotally

n

curvesegments.Foreachpairofneighbouringcurvesegments

ri-1(u)

and

ri(u),wehave

ti-1+4ti+ti+1=3(Pi+1–Pi-1)

fori=1,2,…,n–1

CubicSplineFitting(Ferguson14B-splineModelOnevaluatingthecubicB-spline(k=4) anditsderivativeatt=1,0,

r

(0)=[4V1+(V0+V2)]/6 r(1)=[4V2+(V1+V3)]/6

r’(0)=(V2–V0)/2 r’(1)=(V3–V1)/2B-splinecurvesandBeziercurveshavemanyadvantagesincommonControlpointsinfluencecurvesegmentshapeinapredictable,naturalway,makingthemgoodcandidatesforuseinaninteractivedesignenvironment.Bothtypesofcurveareaxisindependent,multivalued,andbothexhibittheconvexhullproperty.B-splinecurveshaveadvantagesoverBeziercurves:Localcontrolofcurveshape.Theabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve.V0V1V3V2B-splineModelOnevaluatingth15CubicSplineFittingEstimationofendtangents,t0andtnCircularendcondition

Polynomialendcondition

Freeendcondition

CubicSplineFittingEstimation16Chapter3:SurfacesFoursurfacepatchmodelsStandardpolynomial

surfacepatch

Ferguson

surfacepatch

Bezier

surfacepatch

B-spline

surfacepatch

ThreeSurfaceConstructionMethodsTheFMILLmethod

Fergusonfittingmethod

B-splinefittingmethodCurvedBoundaryInterpolatingSurfacePatchesChapter3:SurfacesFoursurfac17StandardPolynomialPatchModel

Consideravector-valuedpolynomialfunction

r(u,v)whosedegreesarecubicinbothuandvwithcoefficients

dijfor(ui,vj).Thatisabi-cubic(standard)polynomialpatchdefinedas

r(u,v)

=

with0

u,v

1

whichcanbeexpressedinamatrixformas

r(u,v)

=

UDVT

where,

U=[u3

u2

u1],V=[v3

v2

v1],

andthe

coefficientsmatrix

D=

StandardPolynomialPatchMode18FergusonSurfacePatchModelSolvingthe16linearequationsfortheunknowncoefficientsdij

givesusaFergusonpatchequation:

r(u,v)=UDVT=UCQCTVT for0

u,v

1

C=

Q=FergusonSurfacePatchModelSo19BezierSurfacePatchModel

r(u,v)==UMBMTVT

0

u,v

1

Where

M=

B=

ThematrixMiscalleda(cubic)Beziercoefficientmatrix,andB

iscalledaBeziercontrolpointnetwhichformsacharacteristicpolyhedron.BezierSurfacePatchModelr(20BezierSurfacePatchModelBezierpatchvs.FergusonPatch

ByevaluatingthecornerconditionsoftheBezierpatch, wehavethefollowingrelationships:

Atu=0,v=0,

r(0,0)=V00 s00=3(V10–V00) t00=3(V01–V00) x00=9(V00–V01

–V10+V11)BezierSurfacePatchModelBezi21B-splineSurfacePatchModelConsidera44arrayofcontrolvertices{Vij}.

r(u,v)=

=UNBNTVT

for0

u,v

1

N=

B-splineSurfacePatchModelCo22SurfaceConstructionMethodsItisdesiredtouselowdegree(usuallycubic)polynomialpatchmodeltoformacompositesurface.Threemethodstobeintroduced:TheFMILLmethod

Fergusonfittingmethod

B-splinefittingmethod

SurfaceConstructionMethodsIt23B-SplineSurfaceFittingComparisonbetweenFergusonfittingandB-splinefittingSamecompositesurfaceresultedWhenmakingfurtherchanges,localchangeforB-splinesurface,globalchangeforFergusonsurface.Question:Whenonecontrolpointischanged,howmanypatchesareaffected?B-SplineSurfaceFittingCompar24CurvedBoundaryInterpolatingSurfacePatches

Methodsofconstructingasurfacepatchinterpolatingtoasetofboundarycurves:Ruledsurfaces

Loftedsurfaces

Coonssurfaces

Twotypesofsweepsurfacepatches:Translationalsweeppatches

RotationalsweeppatchesCurvedBoundaryInterpolating25RuledSurfaces

Considertwoparametriccurves,

r0(u)andr1(u)with0

u

1(seefigure).Alinearblendingofthe2curvesdefinesasurfacepatchcalledaruledsurface

r

(u,

v)=r0(u)+v

(r1(u)-r0(u));0

u,v

1Avectorinthedirectionofr1(u)-r0(u)iscalledarulingvector

t(u).

RuledSurfacesConsidertwop26TranslationalSweepSurfacePatches

InputSummaryTwoparametricspacecurves,g(u)andd(v).

Atranslationalsweepsurfaceisdefinedbythe trajectoryofthecurveg(u)

sweptalongthesecondcurved(v).Themovingcurveg(u)iscalledagenerator

curveTheguidingcurved(v)iscalledadirector

curve

r(u,v)=g(u)+d(v)-d(0)0

u,v

1

r(u,v)g(u)TranslationalSweepSurfacePa27RotationalSweepSurfacePatches

Alsoknownas

surfaceofrevolution

Considerasectioncurves(u)onthex-zplane

s(u)=x(u)i+z(u)k=

(x(u),0,z(u))

Rotatethesectioncurves(u)aboutthez-axis,theresultingsweepsurfacecanbeexpressedasanparametricequationas:

r(u,)=(x(u)cos,x(u)sin,z(u))

r(u,)RotationalSweepSurfacePatch28Chapter4:SolidModellingTwosolidmodelrepresentationschemesGraph-basedmodel(B-reps)Booleanmodel(CSG)EulerFormulaChapter4:SolidModellingTwo29Graph-BasedModelsForsolidsrepresentedasplanar-facedpolyhedron,manysimplerepresentationschemesareavailable,e.g.,connectivitymatrixforpolyhedron.Connectivitymatrix(oradjacencymatrix):Abinarymatrix

0-elementindicatesnoconnectivityexists

1-elementsindicateconnectivityexistsbetweenthepairofelements (vertices,edges,orfaces).

Graph-BasedModelsForsolidsr30BooleanModelsThebinarytreeforthismodelTheleafnodesaretheprimitivesolids,withBooleanoperatorsateachinternalnodeandtheroot.Eachinternalnodecombinesthetwoobjectsimmediatelybelowitinthetree,and,ifnecessary,transformstheresultinreadinessforthenextoperation.

BooleanModelsThebinarytree31BasicConceptsofSolidModelEuler’slaw(orEuler’sformula)Foravalidsolid(polyhedron),thefollowingrelationshipmustbesatisfied:

V–E+F-(L–F)=2–2H

V=NumberofverticesE=NumberofedgesF=NumberoffacesL=NumberofedgeloopsH=Numberofthroughholes

Thisexpressioncanalsobere-writtenas:

V–E+F-

R=2–2H

WhereR=L–Fisthenumberofinterioredgeloops.

ExternaledgeloopInterioredgeloopBasicConceptsofSolidModelE32Chapter7:PartProgrammingandManufacturingWhatisCNC/NC?

Howabouttheircharacteristics?)WhatisCNC/MC/FMS/CIMS?

Howistherelationshipamongthem?)WhatisthebasicconstructionforNCprogramming?HowtodeterminethecocrdinatesystemsofNCmachinetools?WhatisRP/RE?

Howabouttheircharacteristics?)Chapter7:PartProgrammingan33TipYoushouldpreparesufficientmaterials.Youshouldbringyourscientificcalculator,notyouriPhone.Youmayneedaruler.

Alloftheseformthescopeoftestinthefinalexam.TipYoushouldpreparesufficie34ThefinaltipPractice,practice,andpractice…Thefinaltip35ThankyouWishyouforthebestgrades!Thankyou36TotalReviewofComputer-aidedDesignandManufacturing

TotalReviewofComputer-aided37ScoreAssessmentAttendance(10%)Rollcall5times(2markseachtime)courseerercises(15%)Courseexercises3times(5markseachtime)Termpaper(25%)Examination

(50%)2-houropenbookpaper(CAD90%plusCAM10%),CalculationproblemsandnounsexplainScoreAssessmentAttendance(1038ExaminationMaterial

LecturenotesTutorialsandexercisesTeachingMaterial

(MECHANICALENGINEERINGCAD/CAM)

ReferencesbooksSurfacemodellingforCAD/CAM,Chapter1-5,7Geometricmodelling,chapter9-10.

TheCNCWorkshop(ver2),chapter1ExaminationMaterialLecturen39Chapter1:InstructionWhatisCAD/CAM/CAE/CAPP?

Howistherelationshipamongthem?)WhatistheHISTORYofCAD/CAM?HardwareandsoftwareofCAD/CAMsystem?WhatisGeometricModellinganditstypicalapplications?Chapter1:InstructionWhatis40Chapter2:CurvesFourcurvemodelsStandardpolynomial

curve

Ferguson

curve

Bezier

curve

B-spline

curveCurvefittingChapter2:CurvesFourcurvemo41PolynomialCurveModelsCurveSegmentDefinition:

Acubicpolynomialcurvemodel:

r

(u)=a

+bu

+cu2

+

du3

usedinrepresentingacurvesegmentisspecifiedbyits

endconditions,

e.g.,

(a)

4points

(P0,

P1,P2

and

P3)

or

(b) twoendpoints

P0

and

P1;

twoendtangents

t0

and

t1.P0P1P2P3Ingeneral,adegree-npolynomialcurvecanbeusedtofit(n+1)datapoints.

PolynomialCurveModelsCurveS42FergusonCurveModel

Constructingacurvesegment:JoiningtwoendpointsP0andP1;

Havingspecifiedendtangentst0andt1

i.e.,

P0=r(0); P1

=r(1);

t0=r’(0); t1=r’(1)

P1P0t1t0r(u)r(u)=UA=UMV

with0

u

1FergusonCurveModelConstruct43BezierCurveModel

with0

u

1

OnevaluatingtheBezierequationanditsderivativeatu=0,1

r(0)=V0r(1)=Vnr’(0)=n(V1–V0)r’(1)=n(Vn–Vn-1)

Bezierfoundafamilyoffunctionscalled

BernsteinPolynomials

thatsatisfytheseconditions:BezierCurveModelwith044BezierCurveModelCubic(n=3)BeziercurvemodelV0V1V2V3V3V2V1V0V2V1V0V3r(u)=(1–u)3

V0+3u(1–u)2

V1+3u2(1–u)V2+u3

V3

r(u)=

=UMR

r(0)=V0 r’(0)=3

(V1–V0)r(1)=V3

r’(1)=3

(V3–V2)

Theshapeofthecurveresemblesthatofthecontrolpolygon.BezierCurveModelCubic(n=345B-splineModel

with0

u

1

Ni,n(u)

=

TheprimaryfunctionB-splineModeldefinedbyn+1pointsViisgivenbytheWhereB-splineModelwith0u46B-splineModelQuadratic

uniformB-splinemodelwithcontrolpointsV0,V1,andV2

r(t)=

½

[t2

t1]

=U3

M3

P3

0≤t≤1

CubicuniformB-splinemodelwithcontrolpointsV0,V1,V2,andV3

r(t)=1/6

[u3

u2

u1]

=U4

M4

P4

0≤t≤1B-splineModelQuadraticunifor47ParametricContinuityCondition

Twocurvesegmentsra(u)andrb(u)

ra(1)=P1=rb(0)

(C0-continuous)

ra’(1)=t1=rb’(0)

(C1-continuous)

ra’’(1)=rb’’(0)

(C2-continuous)

Collectivelycalleda

parametricC2-condition.

Thecompositecurvetopassthrough

P0,P1,P2,andthetangentst0andt2areassumedtobe

given.Thus,theproblemhereistodeterminethe

unknownt1sothatthetwocurvesegmentsareC2-continuousatthecommonjoinP1.P0P1P2t2t0t1=?ra(u)rb(u)ParametricContinuityConditio48CubicSplineFitting(FergusonModel)

EmployingFergusoncurvemodel

ra(u)=UCSa

rb(u)=UCSb

with0u1

U=[u3

u2

u1]C=

Sa

=

[P0P1t0t1]T

Sb

=

[P1P2t1t2]TApplyingC2continuity:ra’’(1)=6P0–6P1+2t0+4t1rb’’(0)=

-6P1+6P2-4t1-2t2C0-continuityandC1-continuityalreadyappliedCubicSplineFitting(Ferguson49CubicSplineFitting(FergusonModel)ApplyingparametricC2-condition

t0+4t1+t2=3(P2–P0)

Now,considerconstructingaC2-continuouscurvepassingthroughasequenceof

n+1

(P0

toPn)

pointsEndtangents

t0

and

tn

aregiven,inadditiontothe

(n+1)

points{Pi

}.

(Howmanycurvesegments???)

Therearetotally

n

curvesegments.Foreachpairofneighbouringcurvesegments

ri-1(u)

and

ri(u),wehave

ti-1+4ti+ti+1=3(Pi+1–Pi-1)

fori=1,2,…,n–1

CubicSplineFitting(Ferguson50B-splineModelOnevaluatingthecubicB-spline(k=4) anditsderivativeatt=1,0,

r

(0)=[4V1+(V0+V2)]/6 r(1)=[4V2+(V1+V3)]/6

r’(0)=(V2–V0)/2 r’(1)=(V3–V1)/2B-splinecurvesandBeziercurveshavemanyadvantagesincommonControlpointsinfluencecurvesegmentshapeinapredictable,naturalway,makingthemgoodcandidatesforuseinaninteractivedesignenvironment.Bothtypesofcurveareaxisindependent,multivalued,andbothexhibittheconvexhullproperty.B-splinecurveshaveadvantagesoverBeziercurves:Localcontrolofcurveshape.Theabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve.V0V1V3V2B-splineModelOnevaluatingth51CubicSplineFittingEstimationofendtangents,t0andtnCircularendcondition

Polynomialendcondition

Freeendcondition

CubicSplineFittingEstimation52Chapter3:SurfacesFoursurfacepatchmodelsStandardpolynomial

surfacepatch

Ferguson

surfacepatch

Bezier

surfacepatch

B-spline

surfacepatch

ThreeSurfaceConstructionMethodsTheFMILLmethod

Fergusonfittingmethod

B-splinefittingmethodCurvedBoundaryInterpolatingSurfacePatchesChapter3:SurfacesFoursurfac53StandardPolynomialPatchModel

Consideravector-valuedpolynomialfunction

r(u,v)whosedegreesarecubicinbothuandvwithcoefficients

dijfor(ui,vj).Thatisabi-cubic(standard)polynomialpatchdefinedas

r(u,v)

=

with0

u,v

1

whichcanbeexpressedinamatrixformas

r(u,v)

=

UDVT

where,

U=[u3

u2

u1],V=[v3

v2

v1],

andthe

coefficientsmatrix

D=

StandardPolynomialPatchMode54FergusonSurfacePatchModelSolvingthe16linearequationsfortheunknowncoefficientsdij

givesusaFergusonpatchequation:

r(u,v)=UDVT=UCQCTVT for0

u,v

1

C=

Q=FergusonSurfacePatchModelSo55BezierSurfacePatchModel

r(u,v)==UMBMTVT

0

u,v

1

Where

M=

B=

ThematrixMiscalleda(cubic)Beziercoefficientmatrix,andB

iscalledaBeziercontrolpointnetwhichformsacharacteristicpolyhedron.BezierSurfacePatchModelr(56BezierSurfacePatchModelBezierpatchvs.FergusonPatch

ByevaluatingthecornerconditionsoftheBezierpatch, wehavethefollowingrelationships:

Atu=0,v=0,

r(0,0)=V00 s00=3(V10–V00) t00=3(V01–V00) x00=9(V00–V01

–V10+V11)BezierSurfacePatchModelBezi57B-splineSurfacePatchModelConsidera44arrayofcontrolvertices{Vij}.

r(u,v)=

=UNBNTVT

for0

u,v

1

N=

B-splineSurfacePatchModelCo58SurfaceConstructionMethodsItisdesiredtouselowdegree(usuallycubic)polynomialpatchmodeltoformacompositesurface.Threemethodstobeintroduced:TheFMILLmethod

Fergusonfittingmethod

B-splinefittingmethod

SurfaceConstructionMethodsIt59B-SplineSurfaceFittingComparisonbetweenFergusonfittingandB-splinefittingSamecompositesurfaceresultedWhenmakingfurtherchanges,localchangeforB-splinesurface,globalchangeforFergusonsurface.Question:Whenonecontrolpointischanged,howmanypatchesareaffected?B-SplineSurfaceFittingCompar60CurvedBoundaryInterpolatingSurfacePatches

Methodsofconstructingasurfacepatchinterpolatingtoasetofboundarycurves:Ruledsurfaces

Loftedsurfaces

Coonssurfaces

Twotypesofsweepsurfacepatches:Translationalsweeppatches

RotationalsweeppatchesCurvedBoundaryInterpolating61RuledSurfaces

Considertwoparametriccurves,

r0(u)andr1(u)with0

u

1(seefigure).Alinearblendingofthe2curvesdefinesasurfacepatchcalledaruledsurface

r

(u,

v)=r0(u)+v

(r1(u)-r0(u));0

u,v

1Avectorinthedirectionofr1(u)-r0(u)iscalledarulingvector

t(u).

RuledSurfacesConsidertwop62TranslationalSweepSurfacePatches

InputSummaryTwoparametricspacecurves,g(u)andd(v).

Atranslationalsweepsurfaceisdefinedbythe trajectoryofthecurveg(u)

sweptalongthesecondcurved(v).Themovingcurveg(u)iscalledagenerator

curveTheguidingcurved(v)iscalledadirector

curve

r(u,v)=g(u)+d(v)-d(0)0

u,v

1

r(u,v)g(u)TranslationalSweepSurfacePa63RotationalSweepSurfacePatches

Alsoknownas

sur

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论