张量的低秩逼近课件_第1页
张量的低秩逼近课件_第2页
张量的低秩逼近课件_第3页
张量的低秩逼近课件_第4页
张量的低秩逼近课件_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

张量的低秩逼近白敏茹湖南大学数学与计量经济学院2014-11-15张量的低秩逼近1目录张量的基本概念张量特征值的计算张量秩1逼近和低秩逼近张量计算软件复张量的最佳秩1逼近和特征值目录张量的基本概念21.张量的基本概念

张量:多维数组1阶张量:向量2阶张量:矩阵A=(aij)3阶张量:长方体A=(aijk)1.张量的基本概念张量:多维数组1阶张量:向量2阶张量:3张量的秩张量的秩:1927年HitchcockNP-Hardn-rank秩1张量:可计算其中表示张量X的mode-kmode秩1矩阵:A=abT=(aibj)1.张量的基本概念张量的秩张量的秩:1927年HitchcockNP-Ha4张量的低秩逼近:用一个低秩的张量X近似表示张量A最佳秩R逼近Tucker逼近最佳秩1逼近:R=11.张量的基本概念张量的低秩逼近:用一个低秩的张量X近似表示张量A最佳秩R逼近51.张量的基本概念张量的完备化低秩张量M部分元素被观察到,其中是被观察到的元数的指标集.张量完备化是指:从所观察到的部分元素来恢复逼近低秩张量M1.张量的基本概念张量的完备化低秩张量M部分元素6Z(E)-特征值

H-特征值US-特征值2005,QiB-特征值2014,Cui,Dai,Nie2014,Ni,Qi,Bai张量的特征值1.张量的基本概念Z(E)-特征值H-特征值US-特征值2005,Q72.张量特征值的计算

对称非负张量的最大H-特征值的计算:

Ng,Qi,Zhou2009,Chang,Pearson,Zhang2011,L.Zhang,L.Qi2012,Qi,Q.Yang,Y.Yang2013Perron-Frobenius理论

对称张量的最大Z-特征值的计算:

ThesequentialSDPsmethod[Hu,Huang,Qi2013]Sequentialsubspaceprojectionmethod[Hao,Cui,Dai.2014]Shiftedsymmetrichigher-orderpowermethod[Kolda,Mayo2011]Jacobiansemidefiniterelaxations计算对称张量所有实的B-特征值[Cui,Dai,Nie2014]2.张量特征值的计算对称非负张量的最大H-特征值的计算:8对称张量的US-特征值的计算:

GeometricmeasureofentanglementandU-eigenvaluesoftensors,SIAMJournalonMatrixAnalysisandApplications,[Ni,Qi,Bai2014]ComplexShiftedSymmetrichigher-orderpowermethod[Ni,Bai2014]2.张量特征值的计算对称张量的US-特征值的计算:Geometricmea93.张量的秩1逼近和低秩逼近张量的秩1逼近最佳实秩1逼近的计算方法:交替方向法(ADM)、截断高阶奇异值分解(T-HOSVD)、高阶幂法(HOPM)和拟牛顿方法

等。----局部解,或稳定点Nie,Wang[2013]:半正定松弛方法----全局最优解最佳复秩1逼近的计算方法:Ni,Qi,Bai[2014]:代数方程方法----全局最优解3.张量的秩1逼近和低秩逼近张量的秩1逼近最佳实秩1逼近103.张量的秩1逼近和低秩逼近张量的低秩逼近最佳秩R逼近的计算方法:交替最小平方法(ALS)最佳Tucker逼近的计算方法:高阶奇异值(HOSVD),TUCKALS3,t-SVD3.张量的秩1逼近和低秩逼近张量的低秩逼近最佳秩R逼近的114.张量计算软件Matlab,Mathematica,Maple都支持张量计算Matlab仅支持简单运算,而对于更一般的运算以及稀疏和结构张量,需要添加软件包(如:N-wayToolbox,CuBatch,PLSToolbox,TensorToolbox)才能支持,其中除PLSToolbox外,都是免费软件。TensorToolbox是支持稀疏张量。C++语言软件:HUJITensorLibrary(HTL),FTensor,BoostMultidimensionalArrayLibrary(Boost.MultiArray)FORTAN语言软件:TheMultilinearEngine4.张量计算软件Matlab,Mathematica,12[A]GuyanNi,LiqunQiandMinruBai,GeometricmeasureofentanglementandU-eigenvaluesoftensors,SIAMJournalonMatrixAnalysisandApplications2014,35(1):73-87[B]GuyanNi,MinruBai,ShiftedPowerMethodforcomputingsymmetriccomplextensorUS-eigenpairs,2014,submitted.5.复张量的最佳秩1逼近和特征值[A]GuyanNi,LiqunQiandMi13BasicDefinitions1.AtensorSiscalledsymmetric

asitsentriess_{i1···id}

areinvariantunderanypermutationoftheirindices.2.AZ-eigenpair

(,u)toarealsymmetrictensorSisdefinedby3.Aneigenpair

(,u)toarealsymmetrictensorSisdefinedby2005,Qi2011,KoldaandMayo[7]T.G.KoldaandJ.R.Mayo,Shiftedpowermethodforcomputingtensoreigenpairs,SIAMJournalonMatrixAnalysisandApplications,32(2011),pp.1095-1124.uTuu*TuBasicDefinitions1.AtensorS144.Thebestrank-onetensorapproximationproblemsAssumethatTad-orderrealtensor.Denotearank-onetensoristominimizestheleast-squarescostfunction.Thentherank-oneapproximationproblemTherank-onetensorrank-oneapproximationtotensorT.issaidtobethebestrealIfTisasymmetricrealtensor,thebestrealsymmetricrank-oneapproximation.issaidtobe4.Thebestrank-onetensorap15BasicresultsFriedland[2013]andZhangetal[2012]showedthatthebestrealrankoneapproximationtoarealsymmetrictensor,whichinprinciplecanbenonsymmetric,canbechosensymmetric.

udis

thebestrealrank-oneapproximationofTifandonlyif

isaZ-eigenvalueofTwiththelargestabsolutevalue,(,u)isaZ-eigenpair.[Qi2011,Friedland2013,Zhangetal2012][8]S.Friedland,Bestrankoneapproximationofrealsymmetrictensorscanbechosensymmetric,FrontiersofMathematicsinChina,8(2013),pp.19-40.[9]X.Zhang,C.LingandL.Qi,Thebestrank-1approximationofasymmetrictensorandrelatedsphericaloptimizationproblems,SIAMJournalonMatrixAnalysisandApplications33(2012),pp.806-821.BasicresultsFriedland[201316complextensorsandunitaryeigenvaluesAd-ordercomplextensorwillbedenotedbyinnerproductnorm[10]G.Ni,L.QiandM.Bai,GeometricmeasureofentanglementandU-eigenvaluesoftensors,toappearinSIAMJournalonMatrixAnalysisandApplicationsThesuperscript*denotesthecomplexconjugate.ThesuperscriptT

plextensorsandunitaryei17ForA,B∈H,definetheinnerproductandnormasinnerproductnormArank-onetensorForA,B∈H,definetheinner18unitaryeigenvalue(U-eigenvalue)

ofTunitaryeigenvalue(U-eigenval19DenotebySym(d,n)allsymmetricd-ordern-dimensionaltensorsLetx∈

Cn.Simplydenotetherank-onetensorDefineWecallanumber

Caunitarysymmetriceigenvalue(US-eigenvalue)

ofSif

andanonzerovectorDenotebySym(d,n)allsymmet20Thelargest|λ|istheentanglementeigenvalue.Thecorrespondingrank-onetensor⊗di=1xistheclosestsymmetricseparablestate.Theorem1.Assumethatcomplexd-ordertensorsThenb)allU-eigenvaluesarerealnumbers;c)theUS-eigenpair(,x)toasymmetricd-ordercomplextensorScanalsobedefinedbythefollowingequationsystemor(1)Thelargest|λ|istheentangl213.1.US-eigenpairsofsymmetrictensorsTheorem3.(Takagi’sfactorization)LetA∈

Cn×n

beacomplexsymmetrictensor.ThenthereexistsaunitarymatrixU∈

Cn×n

suchthatCased=2:Theorem4.LetA∈

Cn×n

beacomplexsymmetrictensor.LetU∈

Cn×n

beaunitarymatrixsuchthatLetei

=(0,···,0,1,0,···,0)T,i=1,···,n.ThenbothandareUS-eigenpairsofA.ThenumberofdistinctUS-eigenvaluesisatmost2n.3.1.US-eigenpairsofsymmetri22Theorem5.If

1=···=

k>

k+1,1≤k≤n,thenthesetofallUS-eigenvectorswithrespectto

1isthesetofallUS-eigenvectorswithrespectto−λ1isTheorem5.If1=···=233.2.US-eigenpairsofsymmetrictensorsTheproblemoffindingeigenpairsisequivalenttosolvingapolynomialsystemCased3[8]S.Friedland,Bestrankoneapproximationofrealsymmetrictensorscanbechosensymmetric,FrontiersofMathematicsinChina,8(2013),pp.19-40.3.2.US-eigenpairsofsymmetri24Theorem2.Assumethatacomplexd-ordern-dimensionsymmetrictensorS∈Sym(d,n).Thena)ifd≥

3,disanoddinteger,and

0,thenthesystem(1)isequivalentto(2)andthenumberofUS-eigenpairsof(1)isthedoubleofthenumberofsolutionsof(2);b)ifd≥

3,disaneveninteger,and

0,thenthesystem(1)isequivalentto(3)andthenumberofUS-eigenpairsof(1)isequaltothenumberofsolutionsof(3).Cased33.2.US-eigenpairsofsymmetrictensorsTheorem2.Assumethatacompl25Cased3Theorem6.Letd≥3,n≥

2beintegers,S∈Sym(d,n).If(2)hasfinitelymanysolutions,thena)ifdisodd,thenumberofnon-zerosolutionsof(2)isatmostb)ifdiseven,thenumberofnon-zerosolutionsof(3)isatmostc)ShasatmostdistinctnonzeroUS-eigenvalues;d)fornonzeroUS-eigenvalues,alltheUS-eigenpairsofSareasfollowswherexisasolutionof(2).3.2.US-eigenpairsofsymmetrictensorsCased3Theorem6.Letd≥326Note.1.LetSbethesymmetric2×

2tensorwhosenon-zeroentriesareS1111=2,S1112=−1,S1122=−1,S1222=−2,S2222=1.Thenumberofnon-zerosolutionsoftheequationsystem(2)is40whichshowsthattheboundistight.Note.2.CartwrightandSturmfels(2013)showedthateverysymmetrictensorhasfiniteE-eigenvalues.Atthesametime,theyindicatedthatthemagnitudesoftheeigenvalueswith||x||=1maystillbeaninfiniteset(SeeExample5.8of[CartwrightandSturmfels(2013)]),whichimpliesthatthesystemSxd−1=xhasinfinitenon-zerosolutions,whereSisasymmetric3×

3tensorwhosenon-zeroentriesareS111=2,S122=S212=S221=S133=S313=S331=1.[11]D.CartwrightandB.Sturmfels,Thenumberofeigenvaluesofatensor,LinearAlgebraanditsApplications,438(2013),pp.942-952Note.1.LetSbethesymmetri27Note.3.LetSbethesymmetric3×3×3tensorasinNote2.Thenx=forall0<a<1arenon-zerosolutionsofSxd−1=x*.Itimpliesthat(2)mayhaveinfinitenon-zerosolutions.Note.3.LetSbethesymmetri284.Bestsymmetricrank-oneapproximationofsymmetrictensorsTheorem7.LetSbeasymmetriccomplextensor.Let

beaUS-eigenvalueofS.Thena)−

isalsoaUS-eigenvalueofS;b)G(S)=

max.Cased=2Theorem8.LetA∈

Cn×n

beacomplexsymmetricmatrix.Thenforallx∈UEV(A,

1)∪UEV(A,−

1)and

Cwith||=1,(

x)⊗

(

x)arebestsymmetricrank-oneapproximationofA.4.Bestsymmetricrank-oneapp29Cased≥

3Thebestsymmetricrank-oneapproximationproblemistofindaunit-normvectorx∈

Cn,suchthatByTheorem7,introducingtheUS-eigenvaluemethod,Q1isequivalenttothefollowingproblemCased≥3Thebestsymmetric30Theorem9.LetS∈Sym(d,n).Thena)thebestsymmetricrank-oneapproximationproblemisequivalenttothefollowingoptimizationproblemapproximationofSforeachrank-oneTheproblemoffindingeigenpairsisequivalenttosolvingapolynomialsystemTheorem9.LetS∈Sym(d,n).31Letx=y+z−1,y,z∈Rn.ThenQ3isequivalenttothefollowingproblemExample1.AssumethatSisarealsymmetrictensorwithd=3andn=2.ThenQ4isequivalenttothefollowingoptimizationproblemLetx=y+z−1,y,z∈Rn.32Table1.US-eigenpairsofSwithS111=2,S112=1,S122=−1,S222=1.Thebestrealrank-oneapproximationisalsothebestcomplexrank-oneapproximation.Table1.US-eigenpairsofSwit33Theabsolute-valuelargestofZ-eigenvaluesisnotitslargestUS-eigenvalue.Theabsolute-valuelargestof34Thebestrealrank-oneapproximationissometimesalsothebestcomplexrank-oneapproximationevenifthetensorisnotasymmetricnonnegativerealtensor,seeTable1.Theabsolute-valuelargestofZ-eigenvaluesissometimesnotitslargestUS-eigenvalue,seeTable2.Byobservingnumericalexamples,wefindthefollowingresults:

Question1:Whatisthenecessaryandsufficientconditionfor theequalityofthelargestabsoluteZ-eigenvalueand thelargestUS-eigenvaluetoarealsymmetrictensor?Thebestrealrank-oneapproxi35谢谢大家!谢谢大家!36张量的低秩逼近白敏茹湖南大学数学与计量经济学院2014-11-15张量的低秩逼近37目录张量的基本概念张量特征值的计算张量秩1逼近和低秩逼近张量计算软件复张量的最佳秩1逼近和特征值目录张量的基本概念381.张量的基本概念

张量:多维数组1阶张量:向量2阶张量:矩阵A=(aij)3阶张量:长方体A=(aijk)1.张量的基本概念张量:多维数组1阶张量:向量2阶张量:39张量的秩张量的秩:1927年HitchcockNP-Hardn-rank秩1张量:可计算其中表示张量X的mode-kmode秩1矩阵:A=abT=(aibj)1.张量的基本概念张量的秩张量的秩:1927年HitchcockNP-Ha40张量的低秩逼近:用一个低秩的张量X近似表示张量A最佳秩R逼近Tucker逼近最佳秩1逼近:R=11.张量的基本概念张量的低秩逼近:用一个低秩的张量X近似表示张量A最佳秩R逼近411.张量的基本概念张量的完备化低秩张量M部分元素被观察到,其中是被观察到的元数的指标集.张量完备化是指:从所观察到的部分元素来恢复逼近低秩张量M1.张量的基本概念张量的完备化低秩张量M部分元素42Z(E)-特征值

H-特征值US-特征值2005,QiB-特征值2014,Cui,Dai,Nie2014,Ni,Qi,Bai张量的特征值1.张量的基本概念Z(E)-特征值H-特征值US-特征值2005,Q432.张量特征值的计算

对称非负张量的最大H-特征值的计算:

Ng,Qi,Zhou2009,Chang,Pearson,Zhang2011,L.Zhang,L.Qi2012,Qi,Q.Yang,Y.Yang2013Perron-Frobenius理论

对称张量的最大Z-特征值的计算:

ThesequentialSDPsmethod[Hu,Huang,Qi2013]Sequentialsubspaceprojectionmethod[Hao,Cui,Dai.2014]Shiftedsymmetrichigher-orderpowermethod[Kolda,Mayo2011]Jacobiansemidefiniterelaxations计算对称张量所有实的B-特征值[Cui,Dai,Nie2014]2.张量特征值的计算对称非负张量的最大H-特征值的计算:44对称张量的US-特征值的计算:

GeometricmeasureofentanglementandU-eigenvaluesoftensors,SIAMJournalonMatrixAnalysisandApplications,[Ni,Qi,Bai2014]ComplexShiftedSymmetrichigher-orderpowermethod[Ni,Bai2014]2.张量特征值的计算对称张量的US-特征值的计算:Geometricmea453.张量的秩1逼近和低秩逼近张量的秩1逼近最佳实秩1逼近的计算方法:交替方向法(ADM)、截断高阶奇异值分解(T-HOSVD)、高阶幂法(HOPM)和拟牛顿方法

等。----局部解,或稳定点Nie,Wang[2013]:半正定松弛方法----全局最优解最佳复秩1逼近的计算方法:Ni,Qi,Bai[2014]:代数方程方法----全局最优解3.张量的秩1逼近和低秩逼近张量的秩1逼近最佳实秩1逼近463.张量的秩1逼近和低秩逼近张量的低秩逼近最佳秩R逼近的计算方法:交替最小平方法(ALS)最佳Tucker逼近的计算方法:高阶奇异值(HOSVD),TUCKALS3,t-SVD3.张量的秩1逼近和低秩逼近张量的低秩逼近最佳秩R逼近的474.张量计算软件Matlab,Mathematica,Maple都支持张量计算Matlab仅支持简单运算,而对于更一般的运算以及稀疏和结构张量,需要添加软件包(如:N-wayToolbox,CuBatch,PLSToolbox,TensorToolbox)才能支持,其中除PLSToolbox外,都是免费软件。TensorToolbox是支持稀疏张量。C++语言软件:HUJITensorLibrary(HTL),FTensor,BoostMultidimensionalArrayLibrary(Boost.MultiArray)FORTAN语言软件:TheMultilinearEngine4.张量计算软件Matlab,Mathematica,48[A]GuyanNi,LiqunQiandMinruBai,GeometricmeasureofentanglementandU-eigenvaluesoftensors,SIAMJournalonMatrixAnalysisandApplications2014,35(1):73-87[B]GuyanNi,MinruBai,ShiftedPowerMethodforcomputingsymmetriccomplextensorUS-eigenpairs,2014,submitted.5.复张量的最佳秩1逼近和特征值[A]GuyanNi,LiqunQiandMi49BasicDefinitions1.AtensorSiscalledsymmetric

asitsentriess_{i1···id}

areinvariantunderanypermutationoftheirindices.2.AZ-eigenpair

(,u)toarealsymmetrictensorSisdefinedby3.Aneigenpair

(,u)toarealsymmetrictensorSisdefinedby2005,Qi2011,KoldaandMayo[7]T.G.KoldaandJ.R.Mayo,Shiftedpowermethodforcomputingtensoreigenpairs,SIAMJournalonMatrixAnalysisandApplications,32(2011),pp.1095-1124.uTuu*TuBasicDefinitions1.AtensorS504.Thebestrank-onetensorapproximationproblemsAssumethatTad-orderrealtensor.Denotearank-onetensoristominimizestheleast-squarescostfunction.Thentherank-oneapproximationproblemTherank-onetensorrank-oneapproximationtotensorT.issaidtobethebestrealIfTisasymmetricrealtensor,thebestrealsymmetricrank-oneapproximation.issaidtobe4.Thebestrank-onetensorap51BasicresultsFriedland[2013]andZhangetal[2012]showedthatthebestrealrankoneapproximationtoarealsymmetrictensor,whichinprinciplecanbenonsymmetric,canbechosensymmetric.

udis

thebestrealrank-oneapproximationofTifandonlyif

isaZ-eigenvalueofTwiththelargestabsolutevalue,(,u)isaZ-eigenpair.[Qi2011,Friedland2013,Zhangetal2012][8]S.Friedland,Bestrankoneapproximationofrealsymmetrictensorscanbechosensymmetric,FrontiersofMathematicsinChina,8(2013),pp.19-40.[9]X.Zhang,C.LingandL.Qi,Thebestrank-1approximationofasymmetrictensorandrelatedsphericaloptimizationproblems,SIAMJournalonMatrixAnalysisandApplications33(2012),pp.806-821.BasicresultsFriedland[201352complextensorsandunitaryeigenvaluesAd-ordercomplextensorwillbedenotedbyinnerproductnorm[10]G.Ni,L.QiandM.Bai,GeometricmeasureofentanglementandU-eigenvaluesoftensors,toappearinSIAMJournalonMatrixAnalysisandApplicationsThesuperscript*denotesthecomplexconjugate.ThesuperscriptT

plextensorsandunitaryei53ForA,B∈H,definetheinnerproductandnormasinnerproductnormArank-onetensorForA,B∈H,definetheinner54unitaryeigenvalue(U-eigenvalue)

ofTunitaryeigenvalue(U-eigenval55DenotebySym(d,n)allsymmetricd-ordern-dimensionaltensorsLetx∈

Cn.Simplydenotetherank-onetensorDefineWecallanumber

Caunitarysymmetriceigenvalue(US-eigenvalue)

ofSif

andanonzerovectorDenotebySym(d,n)allsymmet56Thelargest|λ|istheentanglementeigenvalue.Thecorrespondingrank-onetensor⊗di=1xistheclosestsymmetricseparablestate.Theorem1.Assumethatcomplexd-ordertensorsThenb)allU-eigenvaluesarerealnumbers;c)theUS-eigenpair(,x)toasymmetricd-ordercomplextensorScanalsobedefinedbythefollowingequationsystemor(1)Thelargest|λ|istheentangl573.1.US-eigenpairsofsymmetrictensorsTheorem3.(Takagi’sfactorization)LetA∈

Cn×n

beacomplexsymmetrictensor.ThenthereexistsaunitarymatrixU∈

Cn×n

suchthatCased=2:Theorem4.LetA∈

Cn×n

beacomplexsymmetrictensor.LetU∈

Cn×n

beaunitarymatrixsuchthatLetei

=(0,···,0,1,0,···,0)T,i=1,···,n.ThenbothandareUS-eigenpairsofA.ThenumberofdistinctUS-eigenvaluesisatmost2n.3.1.US-eigenpairsofsymmetri58Theorem5.If

1=···=

k>

k+1,1≤k≤n,thenthesetofallUS-eigenvectorswithrespectto

1isthesetofallUS-eigenvectorswithrespectto−λ1isTheorem5.If1=···=593.2.US-eigenpairsofsymmetrictensorsTheproblemoffindingeigenpairsisequivalenttosolvingapolynomialsystemCased3[8]S.Friedland,Bestrankoneapproximationofrealsymmetrictensorscanbechosensymmetric,FrontiersofMathematicsinChina,8(2013),pp.19-40.3.2.US-eigenpairsofsymmetri60Theorem2.Assumethatacomplexd-ordern-dimensionsymmetrictensorS∈Sym(d,n).Thena)ifd≥

3,disanoddinteger,and

0,thenthesystem(1)isequivalentto(2)andthenumberofUS-eigenpairsof(1)isthedoubleofthenumberofsolutionsof(2);b)ifd≥

3,disaneveninteger,and

0,thenthesystem(1)isequivalentto(3)andthenumberofUS-eigenpairsof(1)isequaltothenumberofsolutionsof(3).Cased33.2.US-eigenpairsofsymmetrictensorsTheorem2.Assumethatacompl61Cased3Theorem6.Letd≥3,n≥

2beintegers,S∈Sym(d,n).If(2)hasfinitelymanysolutions,thena)ifdisodd,thenumberofnon-zerosolutionsof(2)isatmostb)ifdiseven,thenumberofnon-zerosolutionsof(3)isatmostc)ShasatmostdistinctnonzeroUS-eigenvalues;d)fornonzeroUS-eigenvalues,alltheUS-eigenpairsofSareasfollowswherexisasolutionof(2).3.2.US-eigenpairsofsymmetrictensorsCased3Theorem6.Letd≥362Note.1.LetSbethesymmetric2×

2tensorwhosenon-zeroentriesareS1111=2,S1112=−1,S1122=−1,S1222=−2,S2222=1.Thenumberofnon-zerosolutionsoftheequationsystem(2)is40whichshowsthattheboundistight.Note.2.CartwrightandSturmfels(2013)showedthateverysymmetrictensorhasfiniteE-eigenvalues.Atthesametime,theyindicatedthatthemagnitudesoftheeigenvalueswith||x||=1maystillbeaninfiniteset(SeeExample5.8of[CartwrightandSturmfels(2013)]),whichimpliesthatthesystemSxd−1=xhasinfinitenon-zerosolutions,whereSisasymmetric3×

3tensorwhosenon-zeroentriesareS111=2,S122=S212=S221=S133=S313=S331=1.[11]D.CartwrightandB.Sturmfels,Thenumberofeigenvaluesofatensor,LinearAlgebraanditsApplications,438(2013),pp.942-952Note.1.LetSbethesymmetri63Note.3.LetSbethesymmetric3×3×3tensorasinNote2.Thenx=forall0<a<1arenon-zerosolutionsofSxd−1=x*.Itimpliesthat(2)mayhaveinfinitenon-zerosolutions.Note.3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论