版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形知识点平行四边形知识点平行四边形知识点xxx公司平行四边形知识点文件编号:文件日期:修订次数:第1.0次更改批准审核制定方案设计,管理制度第四章《四边形性质探索》一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.定义中的“两组对边平行”是它的特征,抓住了这一特征,记忆理解也就不困难了.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.同学们要在理解的基础上熟记定义.(2)表示方法:用“”表示平行四边形,例如:平行四边形ABCD记作ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角对称性四个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)对称性:平行四边形是中心对称图形,对角线的交点是对称中心;(5)面积:①=底×高=ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.学会判别方法(1)平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形(2)平行四边形的判别方法的选择已知条件选择的识别方法边一组对边相等方法2或方法4一组对边平行定义或方法4角一组对角相等方法1对角线方法3二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:(1)平行四边形;(2)一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:(1)平行四边形;(2)一组邻边相等,两者缺一不可.(3)正方形:一组邻边相等的矩形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:(1)一组对边平行;(2)一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:(1)边:对边平行且相等;(2)角:对角相等、邻角互补;(3)对角线:对角线互相平分且相等;(4)对称性:既是轴对称图形又是中心对称图形.(2)菱形:(1)边:四条边都相等;(2)角:对角相等、邻角互补;(3)对角线:对角线互相垂直平分且每条对角线平分每组对角;(4)对称性:既是轴对称图形又是中心对称图形.(3)正方形:(1)边:四条边都相等;(2)角:四角相等;(3)对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;(4)对称性:既是轴对称图形又是中心对称图形.(4)等腰梯形:(1)边:上下底不相等,两腰相等;(2)角:对角互补;(3)对角线:对角线相等;(4)对称性:是轴对称图形不是中心对称图形.3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形(1)有一个角是直角的平行四边形;(2)对角线相等的平行四边形;(3)四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形(1)有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.(1)有一个角是直角的菱形;(2)有一组邻边相等的矩形;(3)对角线相等的菱形;(4)对角线互相垂直的矩形.(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形(1)同一底两个底角相等的梯形;(2)对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法(1)先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.(2)先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.(3)说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法(1)先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.(2)先说明四边形ABCD为平行四边形,再说明对角线互相垂直.(3)说明四边形ABCD的四条相等.(3)识别正方形的常用方法(1)先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.(2)先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.(3)先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.(4)先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法(1)先说明四边形ABCD为梯形,再说明两腰相等.(2)先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.(3)先说明四边形ABCD为梯形,再说明对角线相等.5.几种特殊四边形的面积问题(1)设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.(2)设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=.(3)设正方形ABCD的一边长为a,则S正方形=;若正方形的对角线的长为a,则S正方形=.(4)设梯形ABCD的上底为a,下底为b,高为h,则S梯形=.三、多边形:1.多边形的定义在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形,叫做多边形.2.正多边形的定义在平面内,内角都相等、边也都相等的多边形叫做正多边形.3.探索多边形内角和公式n边形内角和公式:任意多边形的外角和都等于360°.4.密铺的定义:何谓密铺呢课本上介绍:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,叫作平面图形的密
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育心理学通关考试题库带答案解析
- 2024年观光型酒店项目资金需求报告代可行性研究报告
- 2023年中级安全工程师《安全生产技术基础》考试真题(试题及答案)
- 水利水电工程管理与实务一级建造师考试试题及答案指导(2024年)
- 2024年度家居油漆翻新工程承包协议
- 2024年员工保密义务协议精简
- 2024年家居装修垃圾处理协议
- 2024年土地抵押融资协议样本
- 2024年叉车操作工劳动协议
- 2024年繁华街区门面房销售协议
- 劳务外包服务 投标方案(技术方案)
- 快消品品牌推广方案
- 安能代理合同
- 2024年公安机关接处警工作规范
- 皮带机维护与管理策略收藏
- 大型活动策划方案流程
- 2024届新结构“8+3+3”选填限时训练11~20(学生版)
- 人教版九年级上册 第五单元 化学方程式(复习)(教学设计)
- 2023.秋期版国开电大专科《人力资源管理》机考问答题库(珍藏版)
- Unit4-Hows-the-weather-today-说课(课件)人教精通版英语四年级上册
- 大学新生心理压力与情绪管理策略与心理调整与发展计划
评论
0/150
提交评论