版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.函数y=f(x)在R上为增函数,且f(2m)>f(﹣m+9),则实数m的取值范围是()A.(﹣∞,﹣3) B.(0,+∞)C.(3,+∞) D.(﹣∞,﹣3)∪(3,+∞)2.若是三角形的一个内角,且,则的值是()A. B.C.或 D.不存在3.定义在上的奇函数,当时,,则的值域是A. B.C. D.4.下列选项中,与的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.5.已知函数,,则函数的值域为()A B.C. D.6.下列说法中,正确的是()A.锐角是第一象限的角 B.终边相同的角必相等C.小于的角一定为锐角 D.第二象限的角必大于第一象限的角7.已知角的顶点与原点重合,始边与轴的非负半轴重合,若它的终边经过点,则()A. B.C. D.8.中国5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%9.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.10.已知,则下列选项错误的是()A. B.C.的最大值是 D.的最小值是11.下列各角中,与角1560°终边相同的角是()A.180° B.-240°C.-120° D.60°12.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.64二、填空题(本大题共4小题,共20分)13.写出一个同时具有下列三个性质的函数:___________.①为幂函数;②为偶函数;③在上单调递减.14.函数定义域是____________15.函数的单调减区间是_________.16.命题“”的否定为___________.三、解答题(本大题共6小题,共70分)17.已知函数,,设(1)求的值;(2)是否存在这样的负实数k,使对一切恒成立,若存在,试求出k取值集合;若不存在,说明理由.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?19.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)20.已知函数fx=2sin(1)在用“五点法”作函数fx2x-0ππ3π2πx3π5π9πf0200完成上述表格,并在坐标系中画出函数y=fx在区间0,π(2)求函数fx(3)求函数fx在区间-π21.已知是偶函数,是奇函数.(1)求,的值;(2)判断的单调性;(不需要证明)(3)若不等式在上恒成立,求实数的取值范围.22.已知定义在上的奇函数(1)求的值;(2)用单调性的定义证明在上是增函数;(3)若,求的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据增函数的定义求解【详解】解:∵函数y=f(x)在R上为增函数,且f(2m)f(﹣m+9),∴2m﹣m+9,解得m3,故选:C2、B【解析】由诱导公式化为,平方求出,结合已知进一步判断角范围,判断符号,求出,然后开方,进而求出的值,与联立,求出,即可求解.【详解】,平方得,,是三角形的一个内角,,,,.故选:B【点睛】本题考查诱导公式化简,考查同角间的三角函数关系求值,要注意,三者关系,知一求三,属于中档题.3、B【解析】根据函数为奇函数得到,,再计算时,得到答案.【详解】定义在上的奇函数,则,;当时,,则当时,;故的值域是故选:【点睛】本题考查了函数的值域,根据函数的奇偶性得到时,是解题的关键.4、C【解析】先计算的值,再逐项计算各项的值,从而可得正确的选项.【详解】.对于A,因为,故A正确.对于B,,故B正确.对于C,,故C错误.对于D,,故D正确.故选:C.5、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B6、A【解析】根据锐角的定义,可判定A正确;利用反例可分别判定B、C、D错误,即可求解.【详解】对于A中,根据锐角的定义,可得锐角满足是第一象限角,所以A正确;对于B中,例如:与的终边相同,但,所以B不正确;对于C中,例如:满足,但不是锐角,所以C不正确;对于D中,例如:为第一象限角,为第二象限角,此时,所以D不正确.故选:A.7、D【解析】利用定义法求出,再用二倍角公式即可求解.【详解】依题意,角的终边经过点,则,于是.故选:D8、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B9、A【解析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理10、D【解析】根据题意求出b的范围可以判断A,然后结合基本不等式判断B,C,最后消元通过二次函数的角度判断D.【详解】对A,,正确;对B,,当且仅当时取“=”,正确;对C,,当且仅当时取“=”,正确;对D,由题意,,由A可知,所以,错误.故选:D.11、B【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】与1560°终边相同的角为,,当时,.故选:B.12、B【解析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.二、填空题(本大题共4小题,共20分)13、(或,,答案不唯一)【解析】结合幂函数的图象与性质可得【详解】由幂函数,当函数图象在一二象限时就满足题意,因此,或,等等故答案为:(或,,答案不唯一)14、【解析】根据偶次方根式下被开方数非负,有因此函数定义域,注意结果要写出解集性质.考点:函数定义域15、##【解析】根据复合函数的单调性“同增异减”,即可求解.【详解】令,根据复合函数单调性可知,内层函数在上单调递减,在上单调递增,外层函数在定义域上单调递增,所以函数#在上单调递减,在上单调递增.故答案为:.16、【解析】根据特称命题的否定为全称命题求解.【详解】因为特称命题的否定为全称命题,所以“”的否定为“”,故答案:.三、解答题(本大题共6小题,共70分)17、(1);(2)存在,.【解析】(1)由题可得,代入即得;(2)由题可得函数,,为奇函数且在上单调递减,构造函数,则可得恒成立,进而可得,对恒成立,即求.【小问1详解】∵函数,,∴,∴.【小问2详解】∵,由,得,又在上单调递减,在其定义域上单调递增,∴在上单调递减,又,∴为奇函数且单调递减;∵,又函数在R上单调递增,∴函数在R上单调递减,又,∴函数为奇函数且单调递减;令,则函数在上单调递减,且为奇函数,由,可得,即恒成立,∴,即,对恒成立,故,即,故存在负实数k,使对一切恒成立,k取值集合为.【点睛】关键点点睛:本题的关键是构造奇函数,从而问题转化为,对恒成立,参变分离后即求.18、(1)(2)4万件【解析】(1)由题意,总成本,由即可得利润函数解析式;(2)根据反比例函数及二次函数的单调性,求出分段函数的最大值即可求解.【小问1详解】解:由题意,总成本,因为销售收入满足,所以利润函数;小问2详解】解:当时,因为函数单调递减,所以万元;当时,函数,所以当时,有最大值为13(万元).所以当工厂生产4万件产品时,可使盈利最多为13万元.19、(1);(2);(3)25.【解析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【详解】(1)由图可知,,,,设所在直线方程为,把代入得,所以.,由两点式得所在的直线方程为,整理得,,,所以,(2)由题意,设,把两点,代入得,解得所以把点,代入也适合,即对应的四点都在同一条直线上,所以.(本题若把四点中的任意两点代入中求出,,再验证也可以)(3)设日销售金额为,依题意得,当时,配方整理得,当时,在区间上的最大值为900当时,,配方整理得,所以当时,在区间上的最大值为1125.综上可知日销售金额最大值为1125元,此时.【点睛】本小题主要考查具体的函数模型在实际问题中的应用,考查数形结合、化归转化的数学思想方法,以及应用意识和运算求解能力20、(1)答案见解析(2)单调递增区间:-π8(3)-2,【解析】(1)利用给定的角依次求出对应的三角函数值,进而填表,结合“五点法”画出图象即可;(2)根据正弦函数的单调增区间计算即可;(3)根据x的范围求出2x-π4【小问1详解】2x-0ππ3π2πxπ3π5π7π9πf020-20函数图象如图所示,【小问2详解】令-π2+2kπ≤2x-得-π8+kπ≤x≤所以函数fx的单调递增区间:-π8【小问3详解】因为x∈-π4所以sin2x-当2x-π4=-π2当2x-π4=π4所以函数fx在区间-π421、(1),(2)单调递增(3)【解析】(1)根据函数奇偶性的性质即可求,的值;(2)根据指数函数的单调性即可判断的单调性;(3)根据函数的单调性将不等式在上恒成立,进行转化,即可求实数的取值范围【小问1详解】解:因为是偶函数,所以,即,则,即,所以,即,解得若是奇函数,又定义域为,则,即,解得;【小问2详解】解:因为,所以,因为函数单调递增,函数单调递减,所以单调递增;小问3详解】解:由(2)知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毕业生自我鉴定工作总结10篇
- 2024年度防水施工技术咨询服务合同2篇
- XX项目配置管理计划-Vx.y
- 交通安全日主题班会教案及课件
- 《建筑施工识图入门》课件
- 商务英语口语课件
- 《电缆电视系统》课件
- 照相馆年终总结
- 防止校园金融诈骗
- 销售金融述职报告范文
- 山东省济南市济阳区三校联考2024-2025学年八年级上学期12月月考语文试题
- 手术室的人文关怀
- 2024合作房地产开发协议
- 农贸市场通风与空调设计方案
- 第25课《周亚夫军细柳》复习课教学设计+2024-2025学年统编版语文八年级上册
- 2024年广东省深圳市中考英语试题含解析
- 金蛇纳瑞2025年公司年会通知模板
- 部编版小学五年级上册道德与法治单元检测试卷含答案(全册)
- GB/T 16288-2024塑料制品的标志
- 四年级英语上册 【月考卷】第三次月考卷(Unit 5-Unit 6) (含答案)(人教PEP)
- 中国航空协会:2024低空经济场景白皮书
评论
0/150
提交评论