




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,动点满足,则动点轨迹与圆位置关系是()A.外离 B.外切C.相交 D.内切2.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x3.已知集合,
,则(
)A. B.C. D.4.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.5.对于空间中的直线,以及平面,,下列说法正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则6.中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是℃,环境温度是℃,则经过分钟后物体的温度℃将满足,其中是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,℃的水应大约冷却()分钟冲泡该绿茶(参考数据:,)A.3 B.3.6C.4 D.4.87.给定四个函数:①;②();③;④.其中是奇函数的有()A.1个 B.2个C.3个 D.4个8.下列函数是偶函数且值域为的是()①;②;③;④A.①② B.②③C.①④ D.③④9.如图,在正方体中,异面直线与所成的角为()A.90° B.60°C.45° D.30°10.已知函数,.若在区间内没有零点,则的取值范围是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知为角终边上一点,且,则______12.已知点为圆上的动点,则的最小值为__________13.已知集合,若集合A有且仅有2个子集,则a的取值构成的集合为________.14.函数,且)的图象恒过定点,则点的坐标为___________;若点在函数的图象上,其中,,则的最大值为___________.15.计算:__________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知.(1)若在第二象限,求的值;(2)已知,且,求值.17.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a取值范围.18.已知.(1)若,求的值;(2)若,且,求的值.19.已知函数(其中),函数(其中).(1)若且函数存在零点,求的取值范围;(2)若是偶函数且函数的图象与函数的图象只有一个公共点,求实数的取值范围.20.已知:,.设函数求:(1)的最小正周期;(2)的对称中心,(3)若,且,求21.指数函数(且)和对数函数(且)互为反函数,已知函数,其反函数为(1)若函数在区间上单调递减,求实数的取值范围;(2)是否存在实数使得对任意,关于的方程在区间上总有三个不等根,,?若存在,求出实数及的取值范围;若不存在,请说明理由
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】设动点P的坐标,利用已知条件列出方程,化简可得点P的轨迹方程为圆,再判断圆心距和半径的关系即可得解.,详解】设,由,得,整理得,表示圆心为,半径为的圆,圆的圆心为为圆心,为半径的圆两圆的圆心距为,满足,所以两个圆相交.故选:C.2、D【解析】A中,周期为,不是偶函数;B中,周期为,函数为奇函数;C中,周期为,函数为奇函数;D中,周期为,函数为偶函数3、D【解析】因,,故,应选答案D4、B【解析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.5、D【解析】利用线面关系,面面关系的性质逐一判断.【详解】解:对于A选项,,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,,的夹角不一定为90°,故C错误;故对D选项,因为,,故,因为,故,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.6、B【解析】根据题意求出k的值,再将θ=80℃,=100℃,=20℃代入即可求得t的值.【详解】由题可知:,冲泡绿茶时水温为80℃,故.故选:B.7、B【解析】首先求出函数的定义域,再由函数的奇偶性定义即可求解.【详解】①函数的定义域为,且,,则函数是奇函数;②函数的定义域关于原点不对称,则函数()为非奇非偶函数;③函数的定义域为,,则函数不是奇函数;④函数的定义域为,,则函数是奇函数.故选:B8、C【解析】根据奇偶性的定义依次判断,并求函数的值域即可得答案.【详解】对于①,是偶函数,且值域为;对于②,是奇函数,值域为;对于③,是偶函数,值域为;对于④,偶函数,且值域为,所以符合题意的有①④故选:C.9、B【解析】连接,可证明,然后可得即为异面直线与所成的角,然后可求出答案.【详解】连接,因为是正方体,所以和平行且相等所以四边形是平行四边形,所以,所以为异面直线与所成的角.因为是等边三角形,所以故选:B10、D【解析】先把化成,求出的零点的一般形式为,根据在区间内没有零点可得关于的不等式组,结合为整数可得其相应的取值,从而得到所求的取值范围.【详解】由题设有,令,则有即因为在区间内没有零点,故存在整数,使得,即,因为,所以且,故或,所以或,故选:D.【点睛】本题考查三角函数在给定范围上的零点的存在性问题,此类问题可转化为不等式组的整数解问题,本题属于难题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.12、-4【解析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为-4.13、【解析】由题意得出方程有唯一实数解或有两个相等的实数解,然后讨论并求解当和时满足题意的参数的值.【详解】∵集合A有且仅有2个子集,可得A中仅有一个元素,即方程仅有一个实数解或有两个相等的实数解.当时,方程化为,∴,此时,符合题意;当时,则由,,令时解方程得,此时,符合题意,令时解方程得,此时符合题意;综上可得满足题意的参数可能的取值有0,-1,1,∴a的取值构成的集合为.故答案为:.【点睛】本题考查了由集合子集的个数求参数的问题,考查了分类讨论思想,属于一般难度的题.14、①②.##0.5【解析】根据对数函数图象恒过定点求出点A坐标;代入一次函数式,借助均值不等式求解作答.【详解】函数,且)中,由得:,则点;依题意,,而,,则,当且仅当2m=n=1时取“=”,即,所以点的坐标为,的最大值为.故答案为:;15、4【解析】故答案为4三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)根据题意,结合半角公式得,故,,再根据二倍角公式计算即可.(2)由题知,再结合正切的和角公式求解即可.【小问1详解】解:,∴∵在第二象限,∴,,∴【小问2详解】解:∴,17、(1)..(2)【解析】(1)由求得,作出函数图象可知的范围;(2)由函数图象可知区间所属范围,列不等式示得结论【详解】(1)因为,所以.函数的大致图象如图所示令,得.故有3个不同的零点.即方程有3个不同的实根.由图可知.(2)由图象可知,函数在区间和上分别单调递增.因为,且函数在区间上为增函数,所以可得,解得.所以实数a的取值范围为.【点睛】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题18、(1)(2)【解析】(1)利用诱导公式求出,由已知得出,再由齐次式即可求解.(2)由题意可得,,再由两角和的正切公式即可求解.【小问1详解】由已知,,得所以【小问2详解】由,,可知,,∴.∵,∴.而,∴.∴,∴.19、(1);(2)或.【解析】(1)根据题意,分离参数且利用对数型复合函数的单调性求得的值域,即可求得参数的取值范围;(2)根据是偶函数求得参数,再根据题意,求解指数方程即可求得的取值范围.【小问1详解】由题意知函数存零点,即有解.又,易知在上是减函数,又,,即,所以,所以的取值范围是.【小问2详解】的定义域为,若是偶函数,则,即解得.此时,,所以即为偶函数.又因为函数与的图象有且只有一个公共点,故方程只有一解,即方程有且只有一个实根令,则方程有且只有一个正根①当时,,不合题意,②当时,方程有两相等正根,则,且,解得,满足题意;③若一个正根和一个负根,则,即时,满足题意,综上所述:实数的取值范围为或.【点睛】本题考察利用函数奇偶性求参数值,以及对数方程的求解,对数型复合函数值域的求解,解决问题的关键是熟练的掌握对数函数的性质,属综合困难题.20、(1);(2)(k∈Z);(3)或.【解析】(1)解:由题意,,(1)函数的最小正周期为;(2),得,所以对称中心;(3)由题意,,得或,所以或点睛:本题考查三角函数的恒等关系的综合应用.本题中,由向量的数量积,同时利用三角函数化简的基本方法,得到,利用三角函数的性质,求出周期、对称中心等21、(1);(2)存在,,.【解析】(1)利用复合函数的单调性及函数的定义域可得,即得;(2)由题可得,令,则可得时,方程有两个不等的实数根,当时方程有且仅有一个根在区间内或1,进而可得对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,再利用二次函数的性质可得,即得.【小问1详解】∵函数,其反函数为,∴,∴,又函数在区间上单调递减,又∵在定义域上单调递增,∴函数在区间上单调递减,∴,解得;【小问2详解】∵,∴,∵,,令,则时,方程有两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论