湖南省株洲市醴陵四中2022-2023学年高一数学第一学期期末考试模拟试题含解析_第1页
湖南省株洲市醴陵四中2022-2023学年高一数学第一学期期末考试模拟试题含解析_第2页
湖南省株洲市醴陵四中2022-2023学年高一数学第一学期期末考试模拟试题含解析_第3页
湖南省株洲市醴陵四中2022-2023学年高一数学第一学期期末考试模拟试题含解析_第4页
湖南省株洲市醴陵四中2022-2023学年高一数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设函数,A.3 B.6C.9 D.122.已知函数(),对于给定的一个实数,点的坐标可能是()A.(2,1) B.(2,-2)C.(2,-1) D.(2,0)3.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.4.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.6.已知矩形,,,沿矩形的对角线将平面折起,若四点都在同一球面上,则该球面的面积为()A. B.C. D.7.已知函数函数有四个不同的零点,,,,且,则()A.1 B.2C.-1 D.8.若一个三角形采用斜二测画法作直观图,则其直观图的面积是原来三角形面积的()倍.A B.C. D.29.定义在上的奇函数满足,且当时,,则()A. B.2C. D.10.已知函数在区间上单调递减,则实数的取值范围是()A. B.C. D.11.已知函数,,的零点分别,,,则,,的大小关系为()A. B.C. D.12.已知唯一的零点在区间、、内,那么下面命题错误的A.函数在或,内有零点B.函数在内无零点C.函数在内有零点D.函数在内不一定有零点二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知幂函数f(x)的图象过点(4,2),则f=________.14.若函数的图象关于直线对称,则的最小值是________.15.已知函数若关于的方程有5个不同的实数根,则的取值范围为___________.16.东方设计中的“白银比例”是,它的重要程度不亚于西方文化中的“黄金比例”,传达出一种独特的东方审美观.折扇纸面可看作是从一个扇形纸面中剪下小扇形纸面制作而成(如图).设制作折扇时剪下小扇形纸面面积为,折扇纸面面积为,当时,扇面看上去较为美观,那么原扇形半径与剪下小扇形半径之比的平方为________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知二次函数.(1)若为偶函数,求在上的值域:(2)若时,的图象恒在直线的上方,求实数a的取值范围.18.计算:(1)(2)19.定义在上的奇函数,已知当时,求实数a的值;求在上解析式;若存在时,使不等式成立,求实数m的取值范围20.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y21.已知函数是偶函数,且,.(1)当时,求函数的值域;(2)设,,求函数的最小值;(3)设,对于(2)中的,是否存在实数,使得函数在时有且只有一个零点?若存在,求出实数的取值范围;若不存在,请说明理由.22.已知集合,.(1)当时,求;(2)若,求实数的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】.故选C.2、D【解析】直接代入,利用为奇函数的性质,得到整体的和为定值.【详解】易知是奇函数,则即的横坐标与纵坐标之和为定值2.故选:D.3、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等4、A【解析】利用充分条件和必要条件的定义判断即可【详解】,所以“”是“”的充分不必要条件故选:A5、B【解析】根据偶函数的性质和单调性解函数不等式【详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B6、C【解析】矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为.故选C.7、D【解析】将问题转化为两个函数图象的交点问题,然后结合图象即可解答.【详解】有四个不同的零点,,,,即方程有四个不同的解的图象如图所示,由二次函数的对称性,可得.因为,所以,故故选:D8、A【解析】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的,故直观图中三角形面积是原三角形面积的.故选:A.【点睛】本题考查平面图形的直观图,由斜二测画法看三角形底边长和高的变化即可,属于基础题.9、D【解析】根据题意,由,分析可得,即可得函数的周期为4,则有,由函数的解析式以及奇偶性可得的值,即可得答案【详解】解:根据题意,函数满足,即,则函数的周期为4,所以又由函数为奇函数,则,又由当,时,,则;则有;故选:【点睛】本题考查函数奇偶性、周期性的应用,注意分析得到函数的周期,属于中档题10、C【解析】求出函数的定义域,由单调性求出a的范围,再由函数在上有意义,列式计算作答.【详解】函数定义域为,,因在,上单调,则函数在,上单调,而函数在区间上单调递减,必有函数在上单调递减,而在上递增,则在上递减,于是得,解得,由,有意义得:,解得,因此,,所以实数的取值范围是.故选:C11、A【解析】判断出三个函数的单调性,可求出,,并判断,进而可得到答案【详解】因为在上递增,当时,,所以;因为在上递增,当时,恒成立,故的零点小于0,即;因为在上递增,当时,,故,故.故选:A.12、C【解析】利用零点所在的区间之间的关系,将唯一的零点所在的区间确定出,则其他区间就不会存在零点,进行选项的正误筛选【详解】解:由题意,唯一的零点在区间、、内,可知该函数的唯一零点在区间内,在其他区间不会存在零点.故、选项正确,函数的零点可能在区间内,也可能在内,故项不一定正确,函数的零点可能在区间内,也可能在内,故函数在内不一定有零点,项正确故选:【点睛】本题考查函数零点的概念,考查函数零点的确定区间,考查命题正误的判定.注意到命题说法的等价说法在判断中的作用二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据图象过点的坐标,求得幂函数解析式,再代值求得函数值即可.【详解】设幂函数为y=xα(α为常数).∵函数f(x)的图象过点(4,2),∴2=4α,∴α=,∴f(x)=,∴f=.故答案为:.【点睛】本题考查幂函数解析式的求解,以及幂函数函数值的求解,属综合简单题.14、【解析】根据正弦函数图象的对称性求解.【详解】依题意可知,得,所以,故当时,取得最小值.故答案为:.【点睛】本题考查三角函数的对称性.正弦函数的对称轴方程是,对称中心是15、【解析】根据函数的解析式作出函数的大致图像,再将整理变形,然后将方程的根的问题转化为函数图象的交点问题解决.【详解】由题意得,即或,的图象如图所示,关于的方程有5个不同的实数根,则或,解得,故答案为:16、##【解析】设原扇形半径为,剪下小扇形半径为,,由已知利用扇形的面积公式即可求解原扇形半径与剪下小扇形半径之比【详解】解:由题意,如图所示,设原扇形半径为,剪下小扇形半径为,,则小扇形纸面面积,折扇纸面面积,由于时,可得,可得,原扇形半径与剪下小扇形半径之比的平方为:故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)【解析】(1)函数为二次函数,其对称轴为.由f(x)为偶函数,可得a=2,再利用二次函数的单调性求出函数f(x)在[−1,2]上的值域;(2)根据题意可得f(x)>ax恒成立,转化为恒成立,将参数分分离出来,再利用均值不等式判断的范围即可【小问1详解】根据题意,函数为二次函数,其对称轴为.若为偶函数,则,解得,则在上先减后增,当时,函数取得最小值9,当时,函数取得最大值13,即函数在上的值域为;【小问2详解】由题意知时,恒成立,即.所以恒成立,因为,所以,当且仅当即时等号成立.所以,解得,所以a的取值范围是.18、(1)(2)【解析】(1)根据分数指数幂的运算法则计算可得;(2)根据对数的运算法则及对数恒等式计算可得;【小问1详解】解:【小问2详解】解:19、(1);(2);(3).【解析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即可得答案;当时,,求出的解析式,结合函数的奇偶性分析可得答案;根据题意,若存在,使得成立,即在有解,变形可得在有解设,分析的单调性可得的最大值,从而可得结果【详解】根据题意,是定义在上的奇函数,则,得经检验满足题意;故;根据题意,当时,,当时,,又是奇函数,则综上,当时,;根据题意,若存在,使得成立,即在有解,即在有解又由,则在有解设,分析可得在上单调递减,又由时,,故即实数m的取值范围是【点睛】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题20、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x集合为.【小问2详解】表格如下:x0y11作图如下,21、(1)(2)(3)存在,【解析】(1)由条件求出,由此求出,利用单调性求其在时的值域;(2)利用换元法,考虑轴与区间的位置关系求,(3)令,由已知可得函数,,在上有且仅有一个交点,由此列不等式求的取值范围.【小问1详解】因为函数是偶函数,故而,可得,则,故易知在上单调递增,故,;故【小问2详解】令,故;则,对称轴为①当时,在上单增,故;②当时,在上单减,在上单增,故;③当时,在上单减,故;故函数的最小值【小问3详解】由(2)知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论