免疫学检测中的曲线拟合课件_第1页
免疫学检测中的曲线拟合课件_第2页
免疫学检测中的曲线拟合课件_第3页
免疫学检测中的曲线拟合课件_第4页
免疫学检测中的曲线拟合课件_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

免疫测定中的数据处理与曲线拟合免疫测定中的数据处理数据处理与科学作图免疫测定中的数据处理与曲线拟合免疫测定的数据处理及结果报告临床免疫检测技术:RIA和EIA等;数据处理的意义和目标:只有在测定结果以一种有意义的方式报告时,测定结果才有用;免疫测定结果的客观评价,对改善免疫测定的重复性以及免疫测定的标准化都有重要意义。数据处理报告的要求:通俗易懂;定性结果明确,定量范围明确;处理后得到的数据要具有可重复性;试验的评价不能建立在假定的正态分布上;结果具有用于进一步分析处理(如流行病学)的充分性。免疫测定以其测定结果的表达方式:定性,定量两类。定性测定数据处理--cut-off值的确定相关概念:ELISA测定的“灰区”---阳性判断值的确定就是要使以其得到的测定结果的假阳性和假阴性的发生率最低,处于阳性判断值定值域中的测定结果可归为可疑,亦即ELISA测定的“灰区”。定性测定数据处理

--cut-off值的确定Cut-off值设定的一般方法:标准差比率standarddeviationratio,SDR测定标本对阴性比值(P/NorS/N)testtonegativeratio,TNR以阴性对照均值+2或3SD作为cut-off值综合阴性对照均值+2或3SD及阳性对照-2或3SD建立cut-off值综合阴性对照均值+2或3SD及阳性对照-2或3SD和转化血清结果建立cutoff值百分位数法相对单位(relativeunits,EIU):

标本EIU=双质控(doublecontrol,2C):0.18X(阴性质控物中值+阳性质控物中值)使用ROC曲线设定cut-off值标本测定值参考样本(弱阳性质控)测定值使用ROC曲线设定cut-off值:ROC曲线:横坐标为假阳性率FPR=[假阳性数/(假阳性+真阴性)]

纵坐标为真阳性率TPR=[真阳性数/(真阳性+假阴性)]根据这种关系确定区分正常与异常的分界点究竟在何处最合适,也就是说此时的假阳性和假阴性率最低或比例最适当或最为符合使用目的,该分界点即可作为ELISAcut-off值。ROC曲线的含义:阳性人群的测定值与阴性人群的测定值重叠程度越小,即测定的识别能力越高,ROC曲线越偏向上,曲线下面积越大。免疫测定中的剂量反应曲线(相对于定量生化):非线性→测定反应和待测物浓度之间的关系不一定是一条简单的直线;可能存在与系列标准品的测定数据拟合的多条曲线→可能因曲线的选择而造成偏差;具有相对大的且方差不齐的测定误差,且在标准曲线的不同位置、在不同批的测定之间这种误差亦不同。数据处理与科学作图问题:给定一批离散的数据点,需确定满足特定要求的曲线或 曲面,从而获取整体的规律。目标:用一个解析函数描述一组(二维)数据(通常是测量值)。方法:插值法--数据假定是正确的,要求以某种方法描述数据点之 间所发生的情况;曲线拟合或回归--设法找出某条光滑曲线,使它最佳地拟合 数据,但不必要经过任何数据点。曲线及相应数学 公式表明数据对(如标准品浓度与测定信号)之间 的比例关系。线性内插与2阶曲线拟合插值法interpolativemethods假设:反应变量的已知绝对精密;曲线构建:以观察到的数据构建曲线;方法:点对点(线性插值)样条插值splinefunction点对点(线性插值)假设:中间值落在数据点之间的直线上;当数据点个数增加和它们之间距离减小时,线性插值就更精确;适用范围:线性范围大或数据点多且相互紧密相连;处理:为使数据更具有线性关系,可对数据进行某些方式的转换(如对数转换),然后在转换数据上进行线性插值。将临近的校准点以点对点的方式用一条直线连起来。线性插值在免疫检测中的应用:采用某些更光滑的曲线来拟合数据点;最常用的方法是3阶多项式,对相继数据点之间的各段建模,这种类型的插值被称为3次样条或简称为样条;处理:为将每一个短曲线相互之间平滑地连起来,需对其进行修饰(smoothing),这需要反复重新计算所有的曲线直至每一片段与其数据点的拟合间的连接可以接受。结点(knots,校准物的浓度值)越多意味着数据处理工作量的增大;适用范围:当希望曲线密切遵循单个的校准物数据点时,或数据非常精密并有多个校准物时可选用,否则应避免使用;样条插值splinefunction将临近的校准点以一条曲线连起来,对整个标准曲线上各点间的短片段进行数学计算得到一条曲线,所获得的合成数学函数称为样条函数。特点:完全拟合试验数据; 每一片段基本上与其他部分无关;问题:对数据点的精密度和准确性依赖大; 每一个片段都应有一个质控样本,而这往往是做不到的; 无法完全解决hooks出现引起的不准确; 有时较其他“复杂”模式更费时。影响因素:确定某部分曲线的两个校准点的准确度和精密度。插值法interpolativemethods及其应用曲线构建:以符合数据点规律的经验模式构建曲线;目标:反映对象整体的变化趋势;达到最佳拟合的方法——线性最小二乘准则;拟合模式:双曲线模式hyperbolicmodel多项式模式polynomialmodelLog-Logit转换Logistic公式(两参数,四参数)曲线拟合与回归curvefitting曲线拟合问题的提法:已知一组(二维)数据,即平面上n个点(xi,yi)i=1,…n,寻求一个函数(曲线)y=f(x),使f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。

2阶曲线拟合与10阶曲线拟合n=1作为阶次,得到最简单的线性近似。通常称为线性回归;n=2作为阶次,得到一个2阶多项式;高阶多项式给出很差的数值特性,不应选择比所需的阶次高的多项式。拟合曲线的阶次:双曲线模式hyperboliccurve:

曲线形状:双曲线;

假定数据拟合下式:y=a+b(1/x)或(1/y)=p+q(x)。

多项式模式:

曲线形状:抛物线;

假定校准曲线拟合下述曲线形式;y=a+bx+cx2+dx3+……+pxn。

Log-Logit转换:

曲线形状:具有单点屈曲的连续性S形函数;

假定校准曲线拟合下述曲线形式:

logit(y)=a+b*ln(x),其中logit(z)=ln[z/(1-z)]。

Logistic公式(两参数,四参数):

曲线形状:具有单点屈曲的连续性S形函数;

假定校准曲线拟合下述曲线形式:

logistic公式:Y=+d

x以对数表示时曲线呈线性。

a-d1+(X/C)b拟合模式:问题:标准曲线的端值得不到好的拟合(特别是低浓度端);测定误差为倒数,与实际误差规律相反;不具有S形,限制了应用。双曲线拟合模式:竞争性免疫测定数据(在限定范围内的值)能拟合很好的平滑曲线。双曲线模式

hyperboliccurve应用 1)将测定反应对校准物浓度作图;

2)对多项式进行最小平方回归。多项式拟合:适用范围:一个三次多项式可被快速和成功地用于竞争免疫测定数据拟合;非竞争性免疫测定:有部分校准曲线为直线,可能拟合不好;x的次方为非整数时能够再现校准曲线的实际线性部分,但在零浓度附近和高浓度时不准确,需要截尾。问题:一个给定反应值可能对应两个结果,因此需对校正曲线进行截尾。多项式模式应用适用范围:竞争免疫测定数据拟合。问题:不能包含零校准物点;不能包含放免中的非特异结合数据。Log-Logit转换应用:1)将测定反应对校准物浓度的对数作图;2)对转换后的曲线进行最小平方回归。Logistic公式(两参数,四参数):Y=(a-d)/[1+(X/C)b]+d两参数:a=y0,d=yxy=(y0-yx)/[1+(X/C)b]+yxY=log(y0-y)/(y-yx)=logit(y),X=log(x),A=-b,B=-blog(c)Logit(y)=Alog(x)+B四参数:不依赖于y0和yx的测定,更好地拟合原始数据。优点:不会出现钩状(hooks);问题:与直线公式相比logistic公式在代数学上是一个相当复杂的公式,因此要找出“最佳拟合”相对较难;参数:a,b,c,d四参数,或带入a&d值,则为b,c两参数。Logistic公式(两参数,四参数)应用例:在fPSA免疫分析中,四参数logistic拟合和四次多项式拟合最接近真实值。Figure2Effectofcurve-fittingprogramappliedonthedegree(extent)ofdeviationoffPSAvaluesfromexpectedmeanvaluesoffPSA(representedbythedottedhorizontalline).剂量反应曲线:通常为S形或双曲线。目标:曲线线性化,获得数学模式。方法:转换一个或两个变量(对数或倒数);多项或其他方式的曲线线性回归或比例转换(logit)。最低要求:应用时经济省时;一个反应变量只对应一个剂量结果(无hooks出现)。总结:曲线拟合及其应用质量作用定律模式和Scatchard作图曲线构建:从化学原理(抗原抗体之间的反应符合质量作用定律)计算校准曲线。原理:Ag+Ab↔AbAg, Ka=,=Ka(n-[AbAg])

n为反应孔中抗体的最大结合能力,以mol/g抗体表示,Ka是平衡常数。Scatchardplot绘制方法:以[AbAg]/[Ag]比值对[AbAg]作图可得到一条直线;计算机软件作图。[AbAg][Ab][Ag][AbAg][Ag]特点:以化学理论为基础,给出了免疫测定的化学本质, 比其他经验模式更可靠。问题:在实际反应中往往只在一定浓度范围内呈线性,受 到以下条件限制—1)抗原抗体均一(标记物与非标记物)和单价(多抗);2)抗原抗体反应必须达到平衡(非一步反应);

3)抗原抗体按照一级质量作用定律反应,无改变抗体或抗原反应性的作用,如协同作用或变构作用;4)结合和游离物浓度必须为真正的测定值。使用范围:非竞争免疫测定中双抗夹心测定不能用。Scatchard作图及其应用相关应用软件Thermolabsystems酶标仪:可进行的曲线拟合类型包括LINEARREGRESSION,POINTTOPOINT,QUAD.POLYNOMIAL,CUBICPOLYNOMIAL,CUBICSPLINE,QUARTICPOLYNOMIAL,4PARAM.LOGISTIC,从中选出最佳拟合(“bestfit”)。Program:RIAAID,ELISAAID(RobertMacielAssociates,Inc.Arlington,MA)

通用的处理程序,可进行log-logit(加权、非加权)、四参数logistic拟合、多项式拟合、点对点拟合等,可用于RIA和EIA。CurveExpert1.3:linearregressionmodels,nonlinearregressionmodels,interpolation,orsplines.Over30models。数据处理类软件IntroductionGraphPadPRISM4.0Demo著名的数据处理软件,用来进行生物学统计、曲线拟合以及作图。SigmaStat3.11Demo是一个易于使用的智能统计软件,尤其适合对统计知识了解不多的人使用,它具有一个“专家系统”,引导你对数据进行统计分析。PeakFit4.12Demo自动分离、拟合与分析非线性数据软件。分析非线性数据,进行曲线作更方便,更精确。数据作图助手IIv2.1_A是一款用于对实验结果进行数据分析和作图的专业软件。它可满足您根据实验数据作出经验曲线,或以平滑曲线联结各数据点的要求。支持三次样条插值算法、最小二乘法直线拟合算法、可化为直线方程处理的特殊函数方程拟合算法以及一元多项式回归算法。CurveExpert1.38ELISA标准曲线拟合等各种有关的实验数据分析,都可以应用。它使用非常方便,可以说是实验数据处理的圣手,并且可以生成漂亮的曲线应用到论文之中。NoSA52005.6.13版中文统计软件。覆盖了绝大部分常用的统计分析方法,嵌入了当代数据处理技术,能满足从事各类研究的专家、学者对数据作统计分析的需要,是各专业研究生、本科生统计学教学的优秀课件。二十万字的在线帮助使您运用自如。从数据录入与管理、统计分析、绘图,到结果管理,NoSA风格独特,核心算法(广义线性模型建模)是创制组全体成员数十年探索的结晶,计算结果通过了SAS、SPSS的验证。DRS2005依据“最小三乘法”编制的数据回归分析软件;它使得一元线性、多元线性、一元非线性以至多元非线性的数据回归,计算更简单结果更准确。摘自生物软件网有关概念准确度accuracy—实验测得的分析物浓度与其真值之间符合程度。标准差standarddeviatio

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论