勾股定理的应用专题_第1页
勾股定理的应用专题_第2页
勾股定理的应用专题_第3页
勾股定理的应用专题_第4页
勾股定理的应用专题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理的应用专题勾股定理的应用专题勾股定理的应用专题xxx公司勾股定理的应用专题文件编号:文件日期:修订次数:第1.0次更改批准审核制定方案设计,管理制度英飞教育数学经典课题习题系列勾股定理的应用专题选择题直角三角形两条直角边的长分别是3和4,则斜边上的高是().A.5 B.1 C.1.2 D.2.42.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是().A.12米 B.13米 C.14米 D.15米3.△ABC中,AD是高,AB=17,BD=15,CD=6,则AC的长是().A.8 B.10 C.12 D.134.一个木工师傅测量了一个等腰三角形的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第()组.A.13,12,12B.12,12,8C.13,10,12D.5,8,45.如果直角三角形有一直角边是11,另外两边长是连续自然数,那么它的周长是().A.121B.132C.120D.110二、填空题6.求下列直角三角形中未知边的长度:b=______c=______.7.△ABC中,∠C=90°,c+a=,c-a=5,则b=_____.8.如图1,小明将一张长为20cm,宽为15cm的长方形纸减去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为_______.图1图2图39.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图2所示,撑脚长AB、DC为3m,两撑脚间的距离BC为4m,则AC=____m就符合要求.10.如图2,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图4是一长方形公园,如果某人从景点A走到景点C,则至少要走_____米.图4图512.一个等腰直角三角形的面积是8,则它的直角边长为______.13.如图5,以直角三角形的三边为直径作三个半圆,则这三个半圆的面积S1、S2、S3之间的关系是______.三、解答题(14题7分,15题8分,16、17各10分)14.如图所示,在一块正方形ABCD的布料上要裁出四个大小不同的直角三角形做彩旗,裁剪师傅用画粉在CD边上找出中点F,在BC边上找出点E,使EC=BC,然后沿着AF、EF、AE裁剪,你认为裁剪师傅的裁剪方案是否正确若正确,给予证明,若不正确,请说明理由.15.如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.16.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是 17.如图6,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C偏离了想要达到的B点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB处的宽度.图618.如图7,根据图上条件,求矩形ABCD的面积.图719.如图8,一艘轮船以16海里/时的速度离开港口O,向东南方向航行,另一艘船在同样同时同地以12海里/时的速度向东北方向航行,它们离开港口半小时分别到达A、B,求A、B两点的距离图820.为了丰富少年儿童的业余文化生活,某社区在如图9所示AB所在的直线上建一图书阅览室,本社区有两所学校所在的位置在点C和D处.CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,试问:阅览室E应建在距A多少㎞处,才能使它到C、D两所学校的距离相等图9参考答案:一、1.D2.A3.B4.C5.B二、6.12,26;7.7;8.20cm(提示:延长AB,DC构成直角三角形);9.5;10.2;11.370;12.4;13.S1+S3=S2.三、14.方案正确,理由:裁剪师的裁剪方案是正确的,设正方形的边长为4a,则DF=FC=2a,EC=a.在Rt△ADF中,由勾股定理,得AF2=AD2+DF2=(4a)2+(2a)2=20a2;在Rt△ECF中,EF2=(2a)2+a2=5a2;在Rt△ABE中,AE2=AB2+BE2=(4a)2+(3a)2=25a2.∴AE2=EF2+AF2,由勾股定理逆定理,得∠AFE=90°,∴△AFE是直角三角形.15.提示:设DE长为xcm,则AE=(9-x)cm,BE=xcm,那么在Rt△ABE中,∠A=90°,∴x2-(9-x)2=32,故(x+9-x)(x-9+x)=9,即2x=10,那么x=5,即DE长为5cm,连BD即BD与EF互相垂直平分,即可求得:EF2=12cm2,∴以EF为边的正方形面积为144cm2.16.考点:平面展开-最短路径问题。分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:将长方体展开,连接A、B,根据两点之间线段最短,AB=QUOTE=25.17.解:在Rt△ABC中,AB2+BC2=AC2,所以AB2+1402=5002,解得AB=480.18.解:在Rt△ADE中,AD2=AE2+DE2=82+152=172,所以AD=17,所以矩形的面积是17×3=51(cm2).19.AB2=OA2+OB2=82+62=100,所以AB=10.20.解:设阅览室E到A的距离为x㎞.连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论