




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S32.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.任意画一个三角形,其内角和是360°D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球3.下列说法中,不正确的是()A.所有的菱形都相似 B.所有的正方形都相似C.所有的等边三角形都相似 D.有一个角是100°的两个等腰三角形相似4.己知正六边形的边长为2,则它的内切圆的半径为(
)A.1 B. C.2 D.25.已知二次函数的图象如图所示,下列结论:①,②,③,④,其中正确结论的个数为()A.4个 B.3个 C.2个 D.1个6.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于()度.A.42 B.48 C.46 D.507.遵义市脱贫攻坚工作中农村危房改造惠及百万余人,2008年以来全市累计实施农村危房改造40.37万户,其中的数据40.37万用科学记数法表示为()A. B. C. D.8.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.100 B.50 C.20 D.109.已知是一元二次方程的解,则的值为()A.-5 B.5 C.4 D.-410.如图,⊙O的弦AB⊥OC,且OD=2DC,AB=,则⊙O的半径为()A.1 B.2 C.3 D.9二、填空题(每小题3分,共24分)11.如图,为测量某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=10m,EC=5m,CD=8m,则河的宽度AB长为______________m.12.已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线_____.13.将二次函数的图像向下平移个单位后,它的顶点恰好落在轴上,那么的值等于__________.14.如图,这是二次函数y=x2﹣2x﹣3的图象,根据图象可知,函数值小于0时x的取值范围为_____.15.如图,是的外接圆,是的中点,连结,其中与交于点.写出图中所有与相似的三角形:________.16.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是__________.17.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.18.已知函数y=kx2﹣2x+1的图象与x轴只有一个有交点,则k的值为_____.三、解答题(共66分)19.(10分)已知反比例函数的图像经过点(2,-3).(1)求这个函数的表达式.(2)点(-1,6),(3,2)是否在这个函数的图像上?(3)这个函数的图像位于哪些象限?函数值y随自变量的增大如何变化?20.(6分)如图,在△ABF中,以AB为直径的圆分别交边AF、BF于C、E两点,CD⊥AF.AC是∠DAB的平分线,(1)求证:直线CD是⊙O的切线.(2)求证:△FEC是等腰三角形21.(6分)如图1,直线y=2x+2分别交x轴、y轴于点A、B,点C为x轴正半轴上的点,点D从点C处出发,沿线段CB匀速运动至点B处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△DEC′与△BOC的重叠部分面积为S,点D的运动时间为t(秒),S与t的函数图象如图2所示.(1)VD,C坐标为;(2)图2中,m=,n=,k=.(3)求出S与t之间的函数关系式(不必写自变量t的取值范围).22.(8分)综合与探究:如图,将抛物线向右平移个单位长度,再向下平移个单位长度后,得到的抛物线,平移后的抛物线与轴分别交于,两点,与轴交于点.抛物线的对称轴与抛物线交于点.(1)请你直接写出抛物线的解析式;(写出顶点式即可)(2)求出,,三点的坐标;(3)在轴上存在一点,使的值最小,求点的坐标.23.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,OA=1,OB=3,抛物线的顶点坐标为D(1,4).(1)求A、B两点的坐标;(2)求抛物线的表达式;(3)过点D做直线DE//y轴,交x轴于点E,点P是抛物线上A、D两点间的一个动点(点P不于A、D两点重合),PA、PB与直线DE分别交于点G、F,当点P运动时,EF+EG的值是否变化,如不变,试求出该值;若变化,请说明理由。24.(8分)已知:△ABC在平面直角坐标系内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是__________;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;四边形AA2C2C的面积是__________平方单位.25.(10分)(1)解方程(2)计算26.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系.(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据双曲线的解析式可得所以在双曲线上的点和原点形成的三角形面积相等,因此可得S1=S2,设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M,则可得△OP1M的面积等于S1和S2,因此可比较的他们的面积大小.【详解】根据双曲线的解析式可得所以可得S1=S2=设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M因此而图象可得所以S1=S2<S3故选D【点睛】本题主要考查双曲线的意义,关键在于,它代表的就是双曲线下方的矩形的面积.2、D【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【详解】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、任意画一个三角形,其内角和是360°的概率为:0,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.【点睛】本题考查频率估算概率,关键在于通过图象得出有利信息.3、A【分析】根据相似多边形的定义,即可得到答案.【详解】解:A、所有的菱形都相似,错误;B、所有的正方形都相似,正确;C、所有的等边三角形都相似,正确;D、有一个角是100°的两个等腰三角形相似,正确;故选:A.【点睛】本题考查了相似多边形的定义,熟练掌握相似多边形的性质:对应角相等,对应边成比例是解题的关键.4、B【解析】由题意得,∠AOB==60°,∴∠AOC=30°,∴OC=2⋅cos30°=2×=,故选B.5、B【分析】由抛物线的开口方向、对称轴、与y轴的交点位置,可判断a、b、c的符号,可判断①,利用对称轴可判断②,由当x=-2时的函数值可判断③,当x=1时的函数值可判断④,从而得出答案.【详解】解:∵抛物线开口向下,与y轴的交点在x轴上方,∴a<0,c>0,∵0<-<1,∴b>0,且b<-2a,∴abc<0,2a+b<0,故①不正确,②正确;
∵当x=-2时,y<0,∴4a-2b+c<0,故③正确;∵当x=1时,y>0,∴a+b+c>0,又c>0,∴a+b+2c>0,故④正确;
综上可知正确的有②③④,
故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题关键是注意掌握数形结合思想的应用.6、A【分析】连接AB,由圆周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性质即可得出答案.【详解】解:连接AB,如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故选:A.【点睛】本题考查了圆周角定理以及直角三角形的性质;熟练掌握圆周角定理是解题的关键.7、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:根据科学记数法的定义:40.37万=故选:B.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.8、B【分析】圆锥的侧面积为半径为10的半圆的面积.【详解】解:圆锥的侧面积=半圆的面积=,故选B.【点睛】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.9、B【解析】根据方程的解的定义,把代入原方程即可.【详解】把代入得:4-2b+6=0b=5故选:B【点睛】本题考查的是方程的解的定义,理解方程解的定义是关键.10、C【分析】根据垂径定理可得AD=AB,由OD=2DC可得OD=OC=OA,利用勾股定理列方程求出OA的长即可得答案.【详解】∵⊙O的弦AB⊥OC,AB=,∴AD=AB=,∵OD=2DC,OA=OC,OC=OD+DC,∴OD=OC=OA,∴OA2=(OA)2+()2,解得:OA=3,(负值舍去),故选:C.【点睛】本题主要考查垂径定理及勾股定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧;熟练掌握垂径定理是解题关键.二、填空题(每小题3分,共24分)11、16【分析】先证明,然后再根据相似三角形的性质求解即可.【详解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本题答案为:16.【点睛】本题考查了相似三角形的应用,准确识图,熟练掌握和灵活运用相似三角形的判定定理与性质定理是解题的关键.12、x=﹣1【分析】根据一元二次方程的两根得出抛物线与x轴的交点,再利用二次函数的对称性可得答案.【详解】∵一元二次方程的两根为﹣5和3,∴二次函数图象与x轴的交点为(﹣5,0)和(3,0),由抛物线的对称性知抛物线的对称轴为,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点,解题的关键是掌握抛物线与x轴交点坐标与对应一元二次方程间的关系及抛物线的对称性.13、1【分析】利用平移的性质得出平移后解析式,进而得出其顶点坐标,再代入直线y=0求出即可.【详解】y=x2-2x+2=(x-1)2+1,
∴将抛物线y=x2-2x+2沿y轴向下平移1个单位,使平移后的抛物线的顶点恰好落在x轴上,
∴m=1,
故答案为:1.【点睛】此题考查二次函数的性质,二次函数的平移,正确记忆二次函数平移规律是解题关键.14、﹣1<x<1.【分析】根据图象直接可以得出答案【详解】如图,从二次函数y=x2﹣2x﹣1的图象中可以看出函数值小于0时x的取值范围为:﹣1<x<1【点睛】此题重点考察学生对二次函数图象的理解,抓住图象性质是解题的关键15、;.【分析】由同弧所对的圆周角相等可得,可利用含对顶角的8字相似模型得到,由等弧所对的圆周角相等可得,在和含公共角,出现母子型相似模型.【详解】∵∠ADE=∠BCE,∠AED=∠CEB,∴;∵是的中点,∴,∴∠EAD=∠ABD,∠ADB公共,∴.综上:;.故答案为:;.【点睛】本题考查的知识点是相似三角形的判定和性质,圆周角定理,同弧或等弧所对的圆周角相等的应用是解题的关键.16、【分析】利用公式直接计算.【详解】解:这六个数字中小于3的有1和2两种情况,则P(向上一面的数字小于3)=.故答案为:【点睛】本题考查概率的计算.17、1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1)×(−1)=1,故答案为1.18、0或1.【分析】当k=0时,函数为一次函数,满足条件;当k≠0时,利用判别式的意义得到当△=0时抛物线与x轴只有一个交点,求出此时k的值即可.【详解】当k=0时,函数解析式为y=﹣2x+1,此一次函数与x轴只有一个交点;当k≠0时,△=(﹣2)2﹣4k=0,解得k=1,此时抛物线与x轴只有一个交点,综上所述,k的值为0或1.故答案为0或1.【点睛】本题考查了抛物线与x轴的交点问题,注意要分情况讨论.三、解答题(共66分)19、(1)y=-;(2)(-1,6)在函数图像上,(3,2)不在函数图像上;(3)二、四象限,在每个象限内,y随x的增大而增大.【分析】(1)根据待定系数法求得即可;(2)根据图象上点的坐标特征,把点(﹣1,6),(3,2)代入解析式即可判断;(3)根据反比例函数的性质即可得到结论.【详解】(1)设反比例函数的解析式为y(k≠0).∵反比例函数的图象经过点(2,﹣3),∴k=2×(﹣3)=﹣6,∴反比例函数的表达式y;(2)把x=﹣1代入y得:y=6,把x=3代入y得:y=﹣2≠2,∴点(﹣1,6)在函数图象上,点(3,2)不在函数图象上.(3)∵k=﹣6<0,∴双曲线在二、四象限,在每个象限内y随x的增大而增大.【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握待定系数法以及反比例函数的性质是解答本题的关键.20、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)先判断出∠FAC=∠ACO,进而得出AF∥CO,即可得出结论;(2)先用等腰三角形的三线合一得出AF=AB.再用同角的补角相等得出∠FEC=∠B即可得出结论.试题解析:(1)连接OC,则∠CAO=∠ACO,又∠FAC=∠CAO∴∠FAC=∠ACO,∴AF∥CO,而CD⊥AF,∴CO⊥CD,即直线CD是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°又∠FAC=∠CAO∴AF=AB(三线合一),∴∠F=∠B,∵四边形EABC是⊙O的内接四边形,∵∠FEC+∠AEC=180°,∠B+∠AEC=180°∴∠FEC=∠B∴∠F=∠FEC,即EC=FC所以△FEC是等腰三角形.21、(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2);;.(3)①当点C′在线段BC上时,S=t2;②当点C′在CB的延长线上,S=−t2+t−;③当点E在x轴负半轴,S=t2−4t+1.【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=时,B和C′点重合,如图1所示,此时S=×CE•OB=,∴CE=,∴BE=.∵OB=2,∴OE=,∴OC=OE+EC=+=4,BC=,CD=,÷=1(单位长度/秒),∴点D的运动速度为1单位长度/秒,点C坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t=k时,点D与点B重合,此时k==2;当t=m时,点E和点O重合,如图2所示.sin∠C===,cos∠C=,OD=OC•sin∠C=4×=,CD=OC•cos∠C=4×=.∴m==,n=BD•OD=×(2−)×=.故答案为:;;2.(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①当点C′在线段BC上时,如图3所示.此时CD=t,CC′=2t,0<CC′≤BC,∴0<t≤.∵tan∠C=,∴DE=CD•tan∠C=t,此时S=CD•DE=t2;②当点C′在CB的延长线上,点E在线段OC上时,如图4所示.此时CD=t,BC′=2t−2,DE=CD•tan∠C=t,CE==t,OE=OC−CE=4−t,∵,即,解得:<t≤.由(1)可知tan∠OEF==,∴OF=OE•tan∠OEF=t,BF=OB−OF=,∴FM=BF•cos∠C=.此时S=CD•DE−BC′•FM=−;③当点E在x轴负半轴,点D在线段BC上时,如图5所示.此时CD=t,BD=BC−CD=2−t,CE=t,DF=,∵,即,∴<t≤2.此时S=BD•DF=×2×(2−t)2=t2−4t+1.综上,当点C′在线段BC上时,S=t2;当点C′在CB的延长线上,S=−t2+t−;当点E在x轴负半轴,S=t2−4t+1.【点睛】本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC、OC的长度;(2)根据图象能够了解当t=m和t=k时,点DE的位置;(3)分三种情况求出S关于t的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S关于t的函数解析式.22、(1);(2),,;(3).【分析】(1)可根据二次函数图像左加右减,上加下减的平移规律进行解答.(2)令x=0即可得到点C的坐标,令y=0即可得到点B,A的坐标(3)有图像可知的对称轴,即可得出点D的坐标;由图像得出的坐标,设直线的解析式为,代入数值,即可得出直线的解析式,就可以得出点P的坐标.【详解】解:(1)二次函数向右平移个单位长度得,,再向下平移个单位长度得故答案为:.(2)由抛物线的图象可知,.当时,,解得:,.,.(3)由抛物线的图象可知,其对称轴的为直线,将代入抛物线,可得.由抛物线的图象可知,点关于抛物线的对称轴轴的对称点为.设直线的解析式为,解得:直线直线的解析式为与轴交点即为点,.【点睛】本题考查了二次函数的综合,熟练掌握二次函数的性质及图形是解题的关键.23、(1)(-1,0),(3,0);(2);(3)1.【分析】(1)根据OA,OB的长,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据相似三角形的判定与性质,可得EG,EF的长,根据整式的加减,可得答案.【详解】解:(1)由抛物线交轴于两点(A在B的左侧),且OA=1,OB=3,得A点坐标(-1,0),B点坐标(3,0);(2)设抛物线的解析式为,把C点坐标代入函数解析式,得解得,抛物线的解析式为;(3)EF+EG=1(或EF+EG是定值),理由如下:过点P作PQ∥y轴交x轴于Q,如图:设P(t,-t2+2t+3),则PQ=-t2+2t+3,AQ=1+t,QB=3-t,∵PQ∥EF,∴△BEF∽△BQP∴∴又∵PQ∥EG,∴△AEG∽△AQP,∴∴∴.【点睛】本题考查了二次函数综合题,解(1)的关键是利用点的坐标表示方法;解(2)的关键是利用待定系数法;解(3)的关键是利用相似三角形的性质得出EG,EF的长,又利用了整式的加减.24、(1)画图见解析,(2,–2);(2)画图见解析,7.1.【解析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可;根据四边形的面积等于两个三角形面积之和解答即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,四边形AA2C2C的面积是=12故答案为:(1)(2,﹣2);(2)7.1.【点睛】本题考查了作图﹣位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解答本题的关键.25、(1);(2)1.【分析】(1)根据因式分解法解方程,即可得到答案;(2)分别计算绝对值,特殊角的三角函数,二次根式,负整数指数幂,然后再进行合并,即可得到答案.【详解】解:(1),∴,∴,∴;(2),.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第3课《电子计算机的发展与应用》教学设计 2023-2024学年川教版(2018)初中信息技术七年级上册
- 2024-2025学年高中英语七选五二练习含解析新人教版必修2
- 2024-2025学年新教材高中数学第四章指数函数对数函数与幂函数4.2.1对数运算应用案巩固提升新人教B版必修第二册
- 2024-2025学年高中数学第一章统计1.2抽样方法1.2.1简单随机抽样学案北师大版必修3
- 2024-2025学年高中物理第一章11第9节带电粒子在电场中的运动练习含解析新人教版选修3-1
- 2024-2025新教材高中物理课时素养评价十八牛顿运动定律的应用含解析新人教版必修1
- 2024-2025学年高中历史第一单元中国传统文化主流思想的演变第1课“百家争鸣”和儒家思想的形成课后篇巩固提升新人教版必修3
- 2024-2025学年高中生物寒假作业精练3植物的激素调节含解析
- 第1课 远古时期的人类活动(教学设计)七年级历史上册同步高效课堂(统编版2024)
- 第二单元教学设计 2023-2024学年统编版高中语文选择性必修下册
- GB 1886.227-2016食品安全国家标准食品添加剂吗啉脂肪酸盐果蜡
- GA/T 765-2020人血红蛋白检测金标试剂条法
- 人教版八年级下册历史全册教案完整版教学设计含教学反思
- 2023年云上贵州大数据(集团)有限公司招聘笔试题库及答案解析
- 无效宣告请求书与意见陈述书代理实务全天版-案例一
- 电子线检验标准
- 建筑施工安全员理论考核试题与答案
- 自来水用水证明
- 车辆租赁服务内容及保障措施方案
- 人教版七年级历史下册教学计划(及进度表)
- 院感考核表(门-诊)
评论
0/150
提交评论