![四川省广元苍溪县联考2022年九年级数学上册期末监测试题含解析_第1页](http://file4.renrendoc.com/view/0715410932f631d77763209a248298d2/0715410932f631d77763209a248298d21.gif)
![四川省广元苍溪县联考2022年九年级数学上册期末监测试题含解析_第2页](http://file4.renrendoc.com/view/0715410932f631d77763209a248298d2/0715410932f631d77763209a248298d22.gif)
![四川省广元苍溪县联考2022年九年级数学上册期末监测试题含解析_第3页](http://file4.renrendoc.com/view/0715410932f631d77763209a248298d2/0715410932f631d77763209a248298d23.gif)
![四川省广元苍溪县联考2022年九年级数学上册期末监测试题含解析_第4页](http://file4.renrendoc.com/view/0715410932f631d77763209a248298d2/0715410932f631d77763209a248298d24.gif)
![四川省广元苍溪县联考2022年九年级数学上册期末监测试题含解析_第5页](http://file4.renrendoc.com/view/0715410932f631d77763209a248298d2/0715410932f631d77763209a248298d25.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,菱形的边长是4厘米,,动点以1厘米/秒的速度自点出发沿方向运动,动点以2厘米/秒的速度自点出发沿方向运动至点停止,同时点也停止运动若点,同时出发运动了秒,记的面积为厘米2,下面图象中能表示与之间的函数关系的是()A. B. C. D.2.对于反比例函数,下列说法中不正确的是()A.点在它的图象上B.它的图象在第一、三象限C.随的增大而减小D.当时,随的增大而减小3.一元二次方程的解是()A. B. C. D.4.的绝对值是A. B. C.2018 D.5.若整数使关于的不等式组至少有4个整数解,且使关于的分式方程有整数解,那么所有满足条件的的和是()A. B. C. D.6.抛物线的顶点坐标是()A.(3,5) B.(-3,-5) C.(-3,5) D.(3,-5)7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.对于二次函数,下列描述错误的是().A.其图像的对称轴是直线=1 B.其图像的顶点坐标是(1,-9)C.当=1时,有最小值-8 D.当>1时,随的增大而增大9.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b10.如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形 B.矩形 C.菱形 D.正方形二、填空题(每小题3分,共24分)11.如图,⊙O是△ABC的外接圆,∠A=60°,BC=6,则⊙O的半径是_____.12.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x,则可列方程____.13.如图,从一块直径为的圆形纸片上剪出一个圆心角为的扇形,使点在圆周上.将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是________.14.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.15.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2km,从A测得灯塔P在北偏东60°的方向,从B测得灯塔P在北偏东45°的方向,则灯塔P到海岸线l的距离为_____km.16.函数是关于的二次函数,且抛物线的开口向上,则的值为____________.17.如图,在⊙O中,,AB=3,则AC=_____.18.已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个实数根,则m的取值范围是_____.三、解答题(共66分)19.(10分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它等5个方面进行问卷调(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题.(1)本次调查共抽取了学生人;(2)求本次调查中喜欢踢足球人数;(3)若甲、乙两位同学通过抽签的方式确定自己填报的课间活动,则两位同学抽到同一运动的概率是多少?20.(6分)用配方法解方程:21.(6分)(2016湖南省永州市)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?22.(8分)如图,在南北方向的海岸线上,有两艘巡逻船,现均收到故障船的求救信号.已知两船相距海里,船在船的北偏东60°方向上,船在船的东南方向上,上有一观测点,测得船正好在观测点的南偏东75°方向上.(1)分别求出与,与间的距离和;(本问如果有根号,结果请保留根号)(此提示可以帮助你解题:∵,∴)(2)已知距观测点处100海里范围内有暗礁,若巡逻船沿直线去营救船,去营救的途中有无触礁的危险?(参考数据:)23.(8分)已知:如图,抛物线与轴交于点,,与轴交于点.(1)求抛物线的解析式;(2)如图,点是线段上方抛物线上的一个动点,连结、.设的面积为.点的横坐标为.①试求关于的函数关系式;②请说明当点运动到什么位置时,的面积有最大值?③过点作轴的垂线,交线段于点,再过点做轴交抛物线于点,连结,请问是否存在点使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.24.(8分)已知二次函数(、为常数)的图像经过点和点.(1)求、的值;(2)如图1,点在抛物线上,点是轴上的一个动点,过点平行于轴的直线平分,求点的坐标;(3)如图2,在(2)的条件下,点是抛物线上的一动点,以为圆心、为半径的圆与轴相交于、两点,若的面积为,请直接写出点的坐标.25.(10分)如图所示,在平面直角坐标系中,抛物线与轴相交于点,点,与轴相交于点,与抛物线的对称轴相交于点.(1)求该抛物线的表达式,并直接写出点的坐标;(2)过点作交抛物线于点,求点的坐标;(3)在(2)的条件下,点在射线上,若与相似,求点的坐标.26.(10分)已知二次函数的图像与轴交于点,与轴的一个交点坐标是.(1)求二次函数的解析式;(2)当为何值时,.
参考答案一、选择题(每小题3分,共30分)1、D【分析】用含t的代数式表示出BP,BQ的长,根据三角形的面积公式就可以求出S,从而得到函数的解析式,进一步即可求解.【详解】解:由题意得BP=4-t,BQ=2t,∴S=×2t××(4-t)=-t2+2t,∴当x=2时,S=-×4+2×2=2.∴选项D的图形符合.故选:D.【点睛】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.2、C【解析】根据反比例函数的性质用排除法解答,当系数k>0时,函数图象在第一、三象限,当x>0或x<0时,y随x的增大而减小,由此进行判断.【详解】A、把点(-2,-1)代入反比例函数y=得-1=-1,本选项正确;
B、∵k=2>0,∴图象在第一、三象限,本选项正确;
C、∵k=2>0,∴图象在第一、三象限内y随x的增大而减小,本选项不正确;
D、当x<0时,y随x的增大而减小,本选项正确.
故选C.【点睛】考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.3、D【分析】这个式子先移项,变成x2=4,从而把问题转化为求4的平方根.【详解】移项得,x2=4开方得,x=±2,故选D.【点睛】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4、C【解析】根据数a的绝对值是指数轴表示数a的点到原点的距离进行解答即可得.【详解】数轴上表示数-2018的点到原点的距离是2018,所以-2018的绝对值是2018,故选C.【点睛】本题考查了绝对值的意义,熟练掌握绝对值的定义是解题的关键.5、A【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.【详解】解不等式组得:∵至少有4个整数解∴,解得分式方程去分母得解得:∵分式方程有整数解,a为整数∴、、、∴、、、、、、、∵,∴又∵∴或满足条件的的和是-13,故选A.【点睛】本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.6、C【解析】由题意根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),求出顶点坐标即可.【详解】解:∵;∴顶点坐标为:(-3,5).故选:C.【点睛】本题考查二次函数的性质和二次函数的顶点式.熟悉二次函数的顶点式方程y=a(x-h)2+k中的h、k所表示的意义是解决问题的关键.7、B【解析】先根据根的判别式得出方程有两个不相等的实数根,设方程x2+bx-2=0的两个根为c、d,根据根与系数的关系得出c+d=-b,cd=-2,再判断即可.【详解】x2+bx−2=0,△=b2−4×1×(−2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx−2=0的两个根为c、d,则c+d=−b,cd=−2,由cd=−2得出方程的两个根一正一负,由c+d=−b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故答案选:B.【点睛】本题考查的知识点是根的判别式及根与系数的关系,解题的关键是熟练的掌握根的判别式及根与系数的关系.8、C【分析】将解析式写成顶点式的形式,再依次进行判断即可得到答案.【详解】=,∴图象的对称轴是直线x=1,故A正确;顶点坐标是(1,-9),故B正确;当x=1时,y有最小值-9,故C错误;∵开口向上,∴当>1时,随的增大而增大,故D正确,故选:C.【点睛】此题考查函数的性质,熟记每种函数解析式的性质是解题的关键.9、D【分析】对于反比例函数(k≠0)而言,当k>0时,作为该函数图象的双曲线的两支应该在第一和第三象限内.由点A与点B的横坐标可知,点A与点B应该在第一象限内,然后根据反比例函数增减性分析问题.【详解】解:∵点A的坐标为(1,a),点B的坐标为(3,b),∴与点A对应的自变量x值为1,与点B对应的自变量x值为3,∵当k>0时,在第一象限内y随x的增大而减小,又∵1<3,即点A对应的x值小于点B对应的x值,∴点A对应的y值大于点B对应的y值,即a>b故选D【点睛】本题考查反比例函数的图像性质,利用数形结合思想解题是关键.10、C【详解】∵在ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∵在△AFO和△CEO中,∠AFO=∠CEO,∠FOA=∠EOC,AO=CO,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形,故选C.二、填空题(每小题3分,共24分)11、1【分析】作直径CD,如图,连接BD,根据圆周角定理得到∠CBD=90°,∠D=10°,然后利用含30度的直角三角形三边的关系求出CD,从而得到⊙O的半径.【详解】解:作直径CD,如图,连接BD,∵CD为⊙O直径,∴∠CBD=90°,∵∠D=∠A=10°,∴BD=BC=×1=1,∴CD=2BD=12,∴OC=1,即⊙O的半径是1.故答案为1.【点睛】本题主要考查圆周角的性质,解决本题的关键是要熟练掌握圆周角的性质.12、720(1+x)2=1.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入1万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=1.故答案为:720(1+x)2=1.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).13、【分析】连接BC,根据圆周角定理求出BC是⊙O的直径,BC=12cm,根据勾股定理求出AB,再根据弧长公式求出半径r.【详解】连接BC,由题意知∠BAC=90°,∴BC是⊙O的直径,BC=12cm,∵AB=AC,∴,∴(cm),设这个圆锥的底面圆的半径是rcm,∵,∴,∴r=(cm),故答案为:.【点睛】此题考查圆周角定理,弧长公式,勾股定理,连接BC得到BC是圆的直径是解题的关键.14、(,2).【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴点E坐标(,2).故答案为:(,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.15、【分析】作PD⊥AB,设PD=x,根据∠CBP=∠BPD=45°知BD=PD=x、AD=AB+BD=2+x,由sin∠PAD=列出关于x的方程,解之可得答案.【详解】如图所示,过点P作PD⊥AB,交AB延长线于点D,设PD=x,∵∠PBD=∠BPD=45°,∴BD=PD=x,又∵AB=2,∴AD=AB+BD=2+x,∵∠PAD=30°,且sin∠PAD=,∴,解得:x=1+,即船P离海岸线l的距离为(1+)km,故答案为1+.【点睛】本题主要考查解直角三角形的应用-方向角问题,解题的关键是根据题意构建合适的直角三角形及三角函数的定义及其应用.16、【分析】由题意根据题意列出关于m的不等式组,求出m的值即可.【详解】解:∵函数是关于x的二次函数,且抛物线的开口向上,∴,解得m=-1.故答案为-1.【点睛】本题考查的是二次函数的定义,熟知一般地形如y=ax1+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数是解答此题的关键.17、1.【分析】根据圆心角、弧、弦、弦心距之间的关系解答即可.【详解】解:∵在⊙O中,,AB=1,
∴AC=AB=1.
故答案为1.【点睛】本题考查圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等.18、且.【详解】∵关于x的一元二次方程(m﹣1)1x1+(1m+1)x+1=0有两个不相等的实数根,∴△=b1﹣4ac>0,即(1m+1)1﹣4×(m﹣1)1×1>0,解这个不等式得,m>,又∵二次项系数是(m﹣1)1≠0,∴m≠1故M得取值范围是m>且m≠1.故答案为m>且m≠1.考点:根的判别式三、解答题(共66分)19、(1)50;(2)12;(3).【分析】(1)根据条形图和扇形图中打篮球的数据计算得出总人数;(2)用总人数减去其他组的人数即可得到踢足球的人数;(3)列表解答即可.【详解】(1)本次调查抽取的学生人数为:(人),故答案为:50;(2)本次调查中喜欢踢足球人数为:50-5-20-8-5=12(人);(3)列表如下:共有25种等可能的情况,其中两位同学抽到同一运动的有5种,∴P(两位同学抽到同一运动的)=.【点睛】此题考查数据的计算,正确掌握根据部分计算得出总体的方法,能计算某部分的人数,会列树状图或表格求概率.20、x1=1+,x2=1-;
【分析】先变形方程得到x2-2x+1=3,然后利用配方法求解;【详解】x2-2x+1=3,
(x-1)2=3,
x-1=±,
所以x1=1+,x2=1-;【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.21、(1)10%;(2)1.【解析】试题分析:(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)2”,列出方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”表示出总利润,再根据总利润不少于3210元,即可的出关于m的一元一次不等式,解不等式即可得出结论.试题解析:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.2.∴m≥1.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品1件.考点:一元二次方程的应用;一元一次不等式的应用.22、(1)与之间的距离为200海里,与之间的距离为海里;(2)巡逻船沿直线航线,在去营救的途中没有触暗礁危险.【分析】(1)作CE⊥AB于E,设AE=x海里,则海里.根据,求得x的值后即可求得AC的长,过点D作DF⊥AC于点F,同理求出AD的长;(2)根据(1)中的结论得出DF的长,再与100比较即可得到答案.【详解】解:(1)如图,过点作于,设海里,过点作于点,设海里,由题意得:,,在中,,在中,.∴,解得:,∴.在中,,则.则.∴,解得:,∴AD=2y=答:与之间的距离为200海里,与之间的距离为海里.(2)由(1)可知,,≈1.3(海里),∵,∴巡逻船沿直线航线,在去营救的途中没有触暗礁危险.【点睛】本题考查的是解直角三角形的应用——方向角问题,能根据题意作出辅助线,构造出直角三角形是解答此题的关键.23、(1);(2)①,②当m=3时,S有最大值,③点P的坐标为(4,6)或(,).【分析】(1)由,则-12a=6,求得a即可;(2)①过点P作x轴的垂线交AB于点D,先求出AB的表达式y=-x+6,设点,则点D(m,-m+6),然后再表示即可;②由在中,<0,故S有最大值;③△PDE为等腰直角三角形,则PE=PD,然后再确定函数的对称轴、E点的横坐标,进一步可得|PE|=2m-4,即求得m即可确定P的坐标.【详解】解:(1)由抛物线的表达式可化为,则-12a=6,解得:a=,故抛物线的表达式为:;(2)①过点P作x轴的垂线交AB于点D,由点A(0,6)、B的坐标可得直线AB的表达式为:y=-x+6,设点,则点D(m,-m+6),∴;②∵,<0∴当m=3时,S有最大值;③∵△PDE为等腰直角三角形,∴PE=PD,∵点,函数的对称轴为:x=2,则点E的横坐标为:4-m,则|PE|=2m-4,即,解得:m=4或-2或或(舍去-2和)当m=4时,=6;当m=时,=.故点P的坐标为(4,6)或(,).【点睛】本题属于二次函数综合应用题,主要考查了一次函数、等腰三角形的性质、图形的面积计算等知识点,掌握并灵活应用所学知识是解答本题的关键.24、(1),;(2);(3)或或【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b,c的二元一次方程组求解即可(2)过点作,过点作.证明△CMD相似于△AME,再根据对应线段成比例求解即可(3)根据题意设点P的纵坐标为y,首先根据三角形面积得出EF与y的关系,再利用勾股定理得出EF与y的关系,从而得出y的值,再代入抛物线解析式求出x的值,得出点坐标.【详解】解:(1)把和代入得:解方程组得出:所以,,(2)由已知条件得出C点坐标为,设.过点作,过点作.两个直角三角形的三个角对应相等,∴∴∴∵解得:∴(3)设点P的纵坐标为y,由题意得出,,∵MP与PE都为圆的半径,∴MP=PE∴整理得出,∴∵∴y=1,∴当y=1时有,,解得,;∴当y=-1时有,,此时,x=0∴综上所述得出P的坐标为:或或【点睛】本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.25、(1),点;(2)点;(3)或【解析】(1)设抛物线的表达式为,将A、B、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年钢构件勘察合同
- 2025年个人房产抵押贷款合同(2篇)
- 2025年专利权质权移转合同
- 2025新译林版初中英语七年级上册unit4单词详解
- 2025年高品质H酸合作协议书
- 2025年交通设施施工合同样本(2篇)
- 2025年中医药科室项目合作合同(2篇)
- 2025年二年级上册数学教学总结例文(2篇)
- 2025年九年级下册英语期末中考复习计划小结模版(2篇)
- 2025年个人汽车油漆购销合同样本(2篇)
- 《媒介社会学》课件
- 项目设计报告范文高中
- 成人手术后疼痛评估与护理团体标准
- zemax-优化函数说明书
- 2021年《民法典担保制度司法解释》适用解读之担保解释的历程
- 第02讲 导数与函数的单调性(学生版)-2025版高中数学一轮复习考点帮
- 《医疗机构工作人员廉洁从业九项准则》专题解读
- 成立商会的可行性报告5则范文
- 湖南财政经济学院《常微分方程》2023-2024学年第一学期期末试卷
- 游戏账号借用合同模板
- 2022年中考英语语法-专题练习-名词(含答案)
评论
0/150
提交评论