陕西省榆林市一中学分校2022年数学九年级上册期末监测试题含解析_第1页
陕西省榆林市一中学分校2022年数学九年级上册期末监测试题含解析_第2页
陕西省榆林市一中学分校2022年数学九年级上册期末监测试题含解析_第3页
陕西省榆林市一中学分校2022年数学九年级上册期末监测试题含解析_第4页
陕西省榆林市一中学分校2022年数学九年级上册期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.关于的一元二次方程有一个根是﹣1,若二次函数的图象的顶点在第一象限,设,则的取值范围是()A. B. C. D.2.若式子在实数范围内有意义,则的取值范围是()A. B. C. D.3.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.4.已知反比例函数的图象经过点,小良说了四句话,其中正确的是()A.当时, B.函数的图象只在第一象限C.随的增大而增大 D.点不在此函数的图象上5.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A. B. C. D.6.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.7.如图所示,中,,,点为中点,将绕点旋转,为中点,则线段的最小值为()A. B. C. D.8.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cm B.3cm C.4cm D.4cm9.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数 B.频数 C.中位数 D.方差10.二次函数图象的顶点坐标是()A. B. C. D.11.如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A.逐渐变大 B.逐渐变小 C.等于定值16 D.等于定值2412.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.二、填空题(每题4分,共24分)13.关于的一元二次方程有两个不相等的实数根,则的取值范围是__________.14.把一元二次方程x(x+1)=4(x﹣1)+2化为一般形式为_____.15.若点,在反比例函数的图象上,则______.(填“>”“<”或“=”)16.如图,在中,,是边上一点,过点作,垂足为,,,,求的长.17.如果记,表示当时的值,即;表示当时的值,即;表示当时,的值,即;那么______________.18.已知A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函数y=﹣图象上的三个点,把y1与、的的值用小于号连接表示为________.三、解答题(共78分)19.(8分)如图,二次函数(其中)的图象与x轴分别交于点A、B(点A位于B的左侧),与y轴交于点C,过点C作x轴的平行线CD交二次函数图像于点D.(1)当m2时,求A、B两点的坐标;(2)过点A作射线AE交二次函数的图像于点E,使得BAEDAB.求点E的坐标(用含m的式子表示);(3)在第(2)问的条件下,二次函数的顶点为F,过点C、F作直线与x轴于点G,试求出GF、AD、AE的长度为三边长的三角形的面积(用含m的式子表示).20.(8分)如图,在矩形ABCD中,AB=6,BC=4,动点Q在边AB上,连接CQ,将△BQC沿CQ所在的直线对折得到△CQN,延长QN交直线CD于点M.(1)求证:MC=MQ(2)当BQ=1时,求DM的长;(3)过点D作DE⊥CQ,垂足为点E,直线QN与直线DE交于点F,且,求BQ的长.21.(8分)甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)测试日期11月5日11月20日12月5日12月20日1月3日甲9697100103104乙10095100105100已知甲同学这5次数学练习成绩的平均数为100分,方差为10分.(1)乙同学这5次数学练习成绩的平均数为分,方差为分;(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.22.(10分)如图,在平面直角系中,点A在x轴正半轴上,点B在y轴正半轴上,∠ABO=30°,AB=2,以AB为边在第一象限内作等边△ABC,反比例函数的图象恰好经过边BC的中点D,边AC与反比例函数的图象交于点E.(1)求反比例函数的解析式;(2)求点E的横坐标.23.(10分)在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是________;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a的取值范围.24.(10分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.(1)请在图1中再找出一对这样的角来:=.(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF对角线的交点,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.(3)在第(2)题的条件下,若此时AB=6,BD=8,求BC的长.25.(12分)计算:(1)sin30°-(5-tan75°)0;(2)3tan230°-sin45°+sin60°.26.解方程:(1)3x(x-2)=4(x-2);(2)2x2-4x+1=0

参考答案一、选择题(每题4分,共48分)1、D【分析】二次函数的图象过点,则,而,则,,二次函数的图象的顶点在第一象限,则,,即可求解.【详解】∵关于的一元二次方程有一个根是﹣1,∴二次函数的图象过点,∴,∴,,则,,∵二次函数的图象的顶点在第一象限,∴,,将,代入上式得:,解得:,,解得:或,故:,故选D.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用2、C【解析】直接利用二次根式的定义即可得出答案.【详解】∵式子在实数范围内有意义,∴x的取值范围是:x>1.故选:C.【点睛】本题考查了二次根式有意义的条件,正确把握定义是解答本题的关键.3、C【分析】由题意首先根据相似三角形求得∠B的度数,然后根据特殊角的三角函数值确定正确的选项即可.【详解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故选:C.【点睛】本题主要考查相似三角形的性质以及三角函数相关,解题的关键是熟练掌握相似三角形的对应角相等.4、D【分析】利用待定系数法求出k,即可根据反比例函数的性质进行判断.【详解】解:∵反比例函数的图象经过点(3,2),∴k=2×3=6,∴,∴图象在一、三象限,在每个象限y随x的增大而减小,故A,B,C错误,∴点不在此函数的图象上,选项D正确;故选:D.【点睛】本题考查反比例函数图象上的点的特征,教育的关键是熟练掌握基本知识,属于中考常考题型.5、C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)==.故选C.6、C【分析】根据弧长公式计算即可.【详解】解:该扇形的弧长=.故选C.【点睛】本题考查了弧长的计算:弧长公式:(弧长为l,圆心角度数为n,圆的半径为R).7、B【分析】如图,连接CN.想办法求出CN,CM,根据MN≥CN−CM即可解决问题.【详解】如图,连接CN.在Rt△ABC中,∵AC=4,∠B=30°,∴AB=2AC=2,BC=AC=3,∵CM=MB=BC=,∵A1N=NB1,∴CN=A1B1=,∵MN≥CN−CM,∴MN≥,即MN≥,∴MN的最小值为,故选:B.【点睛】本题考查解直角三角形,旋转变换等知识,解题的关键是用转化的思想思考问题,属于中考常考题型.8、C【解析】利用扇形的弧长公式可得扇形的弧长;根据扇形的弧长=圆锥的底面周长,让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高:∵扇形的弧长=cm,圆锥的底面半径为4π÷2π=2cm,∴这个圆锥形筒的高为cm.故选C.9、D【分析】要判断成绩的稳定性,一般是通过比较两者的方差实现,据此解答即可.【详解】解:要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的方差.故选:D.【点睛】本题考查了统计量的选择,属于基本题型,熟知方差的意义是解题关键.10、B【解析】根据题目中二次函数的顶点式,可以直接写出该函数的顶点坐标.【详解】∵二次函数y=﹣(x+2)2+6,∴该函数的顶点坐标为(﹣2,6),故选:B.【点睛】本题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.11、C【分析】根据反比例函数k的几何意义得出S△POC=×2=1,S矩形ACOD=6,即可得出,从而得出,通过证得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【详解】如图,由题意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC•PC,S矩形ACOD=OC•AC,∴,∴,∴,∵AB∥轴,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面积等于定值1.故选:C.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键.12、D【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.二、填空题(每题4分,共24分)13、【分析】根据根的判别式即可求出答案;【详解】解:由题意可知:解得:故答案为:【点睛】本题考查一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式并应用.14、x2﹣3x+2=1.【分析】按照去括号、移项、合并同类项的步骤化为ax2+bx+c=1的形式即可.【详解】x2+x=4x﹣4+2,x2﹣3x+2=1.故答案为:x2﹣3x+2=1.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=1(a≠1).其中a是二次项系数,b是一次项系数,c是常数项.15、<【分析】根据反比例的性质,比较大小【详解】∵∴在每一象限内y随x的增大而增大点,在第二象限内y随x的增大而增大∴m<n故本题答案为:<【点睛】本题考查了通过反比例图像的增减性判断大小16、.【分析】在中,根据求得CE,在中,根据求得BC,最后将CE,BC的值代入即可.【详解】解:在中,,.在中,,.的长为.【点睛】本题考查了解直角三角形,熟练掌握三角函数定义是解题的关键.17、【分析】观察前几个数,,,,依此规律即可求解.【详解】∵,,∴,∵,,∴,,∴,∵,∴2019个1.故答案为:.【点睛】此题考查了分式的加减运算法则.解答此类题目的关键是认真观察题中式子的特点,找出其中的规律.18、【分析】根据反比例函数图象上点的坐标特征可分别计算出y1,y2,y3的值即可判断.【详解】∵A(﹣4,y1),B(﹣1,y2),C(1,y3)是反比例函数y=﹣图象上的三个点,∴,,,∴,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征,由反比例函数确定函数值即可.三、解答题(共78分)19、(1),;(2);(3)【分析】(1)求图象与x轴交点,即函数y值为零,解一元二次方程即可;(2)过作轴,过作轴,先求出D点坐标为,设E点为,即可列等式求m的值得E点坐标;(3)由直线的方程:,得G点坐标,再用m的表达式分别表达GF、AD、AE即可.【详解】(1)当时,,∵图象与x轴分别交于点A、B∴时,∴,(2)∵,轴∴过作轴,过作轴∵∴设E∴(3)以GF、BD、BE的长度为三边长的三角形是直角三角形.理由如下:二次函数的顶点为F,则F的坐标为(−m,4),过点F作FH⊥x轴于点H.∵tan∠CGO=,tan∠FGH=,∴=,∴=,∵OC=3,HF=4,OH=m,∴,∴OG=3m.∴,∴∴、、能构成直角三角形面积是所以、、能构成直角三角形面积是【点睛】此题考查二次函数综合题,解题关键在于掌握二次函数图象的问题转换.20、(1)见解析;(2)2.1;(3)或2【分析】(1)由矩形的性质得出∠B=90°,AB=CD=6,CD∥AB,得出∠MCQ=∠CQB,由折叠的性质得出△CBQ≌△CNQ,求出BC=NC=4,NQ=BQ=1,∠CNQ=∠B=90°,∠CQN=∠CQB,得出∠CNM=90°,∠MCQ=∠CQN,证出MC=MQ.

(2)设DM=x,则MQ=MC=6+x,MN=1+x,在Rt△CNM中,由勾股定理得出方程,解方程即可.

(3)分两种情况:①当点M在CD延长线上时,由(1)得:∠MCQ=∠CQM,证出∠FDM=∠F,得出MD=MF,过M作MH⊥DF于H,则DF=2DH,证明△MHD∽△CED,得出,求出MD=CD=1,MC=MQ=7,由勾股定理得出MN即可解决问题.

②当点M在CD边上时,同①得出BQ=2即可.【详解】(1)证明:∵四边形ABCD是矩形,

∴DC∥AB

即∠MCQ=∠CQB,

∵△BQC沿CQ所在的直线对折得到△CQN,

∴∠CQN=∠CQB,

即∠MCQ=∠MQC,

∴MC=MQ.

(2)∵四边形ABCD是矩形,△BQC沿CQ所在的直线对折得到△CQN,

∴∠CNM=∠B=90°,

设DM=x,则MQ=MC=6+x,MN=1+x,

在Rt△CNM中,MB2=BN2+MN2,

即(x+6)2=42+(x+1)2,

解得:x=,

∴DM=,

∴DM的长2.1.

(3)解:分两种情况:

①当点M在CD延长线上时,如图所示:

由(1)得∠MCQ=∠MQC,

∵DE⊥CQ,

∴∠CDE=∠F,

又∵∠CDE=∠FDM,

∴∠FDM=∠F,

∴MD=MF.

过M点作MH⊥DF于H,则DF=2DH,

又,∴,

∵DE⊥CQ

MH⊥DF,

∴∠MHD=∠DEC=90°,

∴△MHD∽△DEC

∴,

∴DM=1,MC=MQ=7,

∴MN=

∴BQ=NQ=

②当点M在CD边上时,如图所示,类似可求得BQ=2.

综上所述,BQ的长为或2.【点睛】此题考查四边形综合题,翻折变换的性质,矩形的性质,等腰三角形的判定,勾股定理,相似三角形的判定与性质,解题关键在于掌握各性质定义和需要进行分类讨论.21、(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【分析】(1)根据平均数公式和方差公式计算即可;(2)通过成绩逐渐的变化情况或100分以上(含100分)的次数分析即可.【详解】解:(1)乙=乙=故答案为:100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【点睛】此题考查的是求平均数和方差,掌握平均数公式和方差公式是解决此题的关键.22、(1);(2).【分析】(1)直接利用等边三角形的性质结合举行的判定方法得出D点坐标进而得出答案;(2)首先求出AC的解析式进而将两函数联立求出E点坐标即可.【详解】解:(1)∵∠ABO=30°,AB=2,∴OA=1,,连接AD.∵△ABC是等边三角形,点D是BC的中点,∴AD⊥BC,又∠OBD=∠BOA=90°,∴四边形OBDA是矩形,∴,∴反比例函数解析式是.(2)由(1)可知,A(1,0),,设一次函数解析式为y=kx+b,将A,C代入得,解得,∴.联立,消去y,得,变形得x2﹣x﹣1=0,解得,,∵xE>1,∴.【点睛】本题主要考察反比例函数综合题,解题关键是熟练掌握计算法则求出AC的解析式.23、(1)①直线x=1;②b=-1a;(1)-1≤a<-1或1<a≤1.【分析】(1)①根据抛物线的对称性可以直接得出其对称轴;②利用对称轴公式进一步求解即可;(1)分两种情况:①,②,据此依次讨论即可.【详解】解:(1)①∵当x=0时,y=c,∴点A坐标为(0,c),∵点A向右平移1个单位长度,得到点B,∴点B(1,c),∵点B在抛物线上,∴抛物线的对称轴是:直线x=1;故答案为:直线x=1;②∵抛物线的对称轴是直线:x=1,∴,即;(1)①如图,若,因为点A(0,c),B(1,c)都是整点,且指定区域内恰有一个整点,因此这个整点D的坐标必为(1,c-1),但是从运算层面如何保证“恰有一个”呢,与抛物线的顶点C(1,c-a)做位置与数量关系上的比较,必须考虑到紧邻点D的另一个整点E(1,c-1)不在指定区域内,所以可列出不等式组:,解得:;②如图,若,同理可得:,解得:;综上所述,符合题意的a的取值范围是-1≤a<-1或1<a≤1.【点睛】本题主要考查了抛物线的性质和一元一次不等式组的综合运用,熟练二次函数的性质、灵活应用数形结合的数学思想是解题关键.24、(1)∠ABD=∠ACD(或∠DAC=∠DBC);(2)四边形ACEF为正方形,理由见解析;(3)1【分析】(1)根据题意给出的性质即可得出一组角相等;(2)先证明四边形ACEF为菱形,再证明四边形ABCD为损矩形,根据损矩形的性质即可求出四边形ACEF是正方形;(3)过点D作DM⊥BC,过点E作EN⊥BC交BC的延长线于点N,可得△BDM为等腰直角三角形,从而得出△ABC≌△CNE根据性质即可得出BC的长.【详解】(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;故答案为:∠ABD=∠ACD(或∠DAC=∠DBC);(2)四边形ACEF为正方形证明:∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论