版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter2FundamentalHydraulic
FluidMechanicsChapter2FundamentalHydrau2.1
PerformancesoftheHydraulicOil
2.2Hydrostatics
2.3Hydrodynamics
2.4CharacteristicsofFluidFlowinPipeline2.5FlowRateandPressureFeaturesofOrifice
2.6 HydraulicShockandCavitation
Chapterlist2.1PerformancesoftheHyd2.1.1TheMainperformances2.1.2Therequestsandchoiceofhydraulicoil
2.1PerformancesoftheHydraulicOil
2.1PerformancesoftheHydra1.Density(kg/m3)
2.Compressibility
2.1.1TheMainperformances
thecoefficientofcompressibility,isthebulkmodulusofelasticity(2-2)(2-1)isdefinedastheratioofthechangeinpressure()torelativechangeinvolume()whilethetemperatureremainsconstant.
1.Density(kg/m3)3.Viscosity
TheexperimentshaveprovedthatfrictionforcebetweenthetwofluidmoleculescanbedescribedasWhereisviscositycoefficient,alsokinematicviscosity.Fig.2-1Thesketchofviscosity
ThesketchofviscosityisillustratedbyFig.2-1.
(2-3)Cohesionbetweentwomolecules……3.ViscosityTheexperimentshTherearethreemethodstodescribetheviscosity:absoluteviscosity,Kinematicviscosityandrelativeviscosity.(1)Dynamicviscosityorabsoluteviscosity
μ(Pa•s)or(N•s/m2)(2)Kinematicviscosityν(mm2/s)(2-4)(3)
Relativeviscosity(conditionalviscosity)Therelativeviscosity
whichusedinChinaistestedbytheviscometer,suchasFig.2-2.TherearethreemethodstodesFig.2-2Principleofviscometer
Fig.2-2PrincipleofvisTakethenotedescribestheviscosity:Theconversionformulabetweentheandkinematicviscosityis
(m2/s)
(4)Viscosity-temperature:Fortheviscositylessthan15andthetemperature30℃~150℃,theviscosity-temperatureformulaisdescribeasfollowing(WecanalsolookupfromFig.2-3):(2-5)(2-6)(2-7)(5)Viscosity-pressure(2-8)(6)Othersperformances
:physicalandchemical,suchasanti-inflammability,anti-oxygenation,anti-concreting,anti-foamandanti-corrosionetc.TakethenotedescribesthFig.2-3Theviscosity-temperatureofhomemadeoils
Fig.2-3Theviscosity-tempera2.Choice
Thehydraulicoilinahydraulicsystematisrecommendedgenerally.Request
Theoilplaystworolesoftransmissionenergyandlubricationonthesurfacesofworkinginteraction.
Therequestsforthehydraulicfluidsare:appropriateviscosity,thegoodinpropertyoffavorableviscosity-temperature,agoodlubricity,chemicallyandenvironmentallystabilities,compatiblewithothersystemmaterialsandsoon.2.1.2Therequestsandchoiceofhydraulicoil
Thehydraulicoilshouldbechoseninaccordingtotherequestofhydraulicpump.ThehydraulicoilviscosityadaptedfordifferenthydraulicpumpsislistedinTab.2-2.2.ChoiceRequest2.1.2ThereTab.2-2TherangeofviscosityofhydraulicoiladaptedtopumpsTypesviscosities(10-6m2/s)TypesViscosities(10-6m2/s)5~40℃①40~80℃①5~40℃①40~80℃①VanePumpsP<7MPa30~5040~75Gearpumps30~7095~165P≥7MPa50~7050~90Radialpistonpumps30~5065~240Screwpumps30~5040~80Axialpistonpumps30~7070~150①5~40℃、40~80℃aredescribedthetemperaturesofhydraulicsystem.Tab.2-2Therangeofviscosit2.2.1CharacteristicsofHydrostatics2.2.2
Thebasicformulaofhydrostatics2.2.3TheprincipleofPascalapplication2.2.4Effectoffluidpressureoncurvedsurfaces2.2
Hydrostatics
2.2.1CharacteristicsofHy1.ThehydrostaticsStaticpressure:theactionforceinnormalonaunitarea.Itisintituledpressureinphysicsandactionforceinengineeringusually.
2.Thecharacteristicsofhydrostatics
(1)Inanyhomogeneousfluidsystematrest,thepressureincreaseswiththedepthofthefluid.(2)Pressureatanypointinahomogeneousfluidsystematrestactsperpendicularlytosurfacesincontactwiththefluid.2.2.1CharacteristicsofHydrostatics
1.Thehydrostatics.2Thebasicformulaofhydrostatics
Thebasicformulaofhydrostatics
Theactingpressuresonthefluidatrest,inacontainerincludetheweight,forceonthefluidsurface,showninFig.2-4a.
Fig.2-4ThedistributionofforcesinacontainerwithrestfluidThetotalbalanceforceformulais
Formula(2-9)divideby,then
(2-9)(2-10)2.2.2ThebasicformulaofhyThepressureonarestfluidcontainedinvolvestwoparts:
Theformula(2-10)isthebasicequationforhydrostatic.Itstatesthatthedistributionstatusofhydrostaticsasfollowing:(2)Thepressureisincreasedwiththedepthh;(3)Isotonicpressuresurface,thatis,thepressuresareallequalatthesurfaceconsistedbyallpointsatgivendepthh,suchasatthelineofA-A;(4)Conservationofenergy
(2-11)(2-12)Here,theaspressureenergyatperunitmassfluid.Thepressureonarestfluidc2.Thedefinitionofpressure(1)AbsolutepressureRelativegaugepressure:Thepressuresmeasuredbyapressuregaugeareallrelativepressure(3)Vacuum(negativepressure)
1Pa=1N/m2;1bar=1×105Pa=1×105N/m2;1at=1kgf/cm2=9.8×104N/m2;1mH2O=9.8×103N/m2;1mmHg=1.33×102N/m2.
TherelationshipofthreepressuresisshowninFig.2-5.Theunitsofpressureandrelationsbetweendifferentpressures:2.Thedefinitionofpressure1Fig.2-5Absolute,relativeandvacuumpressureFig.2-5Absolute,relativeanExample2-1:Theoilisfullinacontainer.Foragivencondition,thedensityofoil,theactionforceonthispistonsurfaceF=1000N,theareaofpistonA=1×10-3(m2),ifthemassofpistonisneglected,trytocalculatethestaticpressurepath=0.5m,asshowninFig.2-6.Fig.2-6CalculationoffluidstaticpressureExample2-1:Theoilisfulli2.2.3
TheprincipleofPascal
TheprincipleofPascal:pressureexertedonaconfinedliquidistransmittedundiminishedinalldirectionsandactswithequalforceonallequalareas.ItsapplicationisshowninFig.2-7.Fig.2-7TheexampleofPascalprinciple2.2.3TheprincipleofPascal(1)Whenthewallisplane:F=PA(2)Whenwallisacurvedsurface:2.2.4Effectoffluidpressureoncurvedsurfaces
Example2-2.Fig.2-8showsacylindricalmemberofinsideradiiroflength.Calculation:theeffectforceFx
ontherightsegmentofthecylinderatxdirection.Fig.2-8Effectforceontheinnersurfaceofthecylinder
(1)Whenthewallisplane:F=2.3
Hydrodynamics
2.3.1Equationofcontinuity—conservationofmass2.3.2BernoulliEquation—conservationofenergy2.3.3Equationofmomentum—conservationofmomentum
2.3Hydrodynamics2.3.1EqTheequationsofcontinuity,Bernoulliandmomentumarebasicmotionequationsthatdescribethedynamicslawsinflowingfluid2.3.1
Theequationofcontinuity—conservationofmass
Fig.2-9sketchofconservationmassaccordingtotheconservationofmass,Forincompressibleflow,,OrconstantFormula(2-16)istheequationofflowcontinuity.
(2-14)(2-15)
(2-16)TheequationsofcontinTheassumptions:noenergyloss(meansin-viscidandincompressible),accordingtheequationofBernoulli—Conservationofenergy.OrFormulas(2-17)isthewell-knowBernoulliequation.Itstatesthatidealfluidincludepressureenergy,potentialenergy,andkineticenergy.Thesethreeenergiescanbetransferredbetweeneachother,butthetotalenergyisalwaysinvariable.
2.3.2BernoulliEquation—conservationofenergyFig.2-10SketchofBernoulliequation
(2-17)1.IdealequationofBernoulliTheassumptions:noenerg2.RealequationofBernoulliInmanyhydraulicsystems,theenergiescanbelost(thetotallossisdescribedashw),ontheotherhand,therealvelocityisanon-uniformdistributionandsetakineticcorrectionfactortooffsetthislost,andthecoefficientdefinedby:Hereα=1.1whenitisturbulentflow,andα=2whenlaminarflow,butusuallyinpracticesettheα=1.
Afterintroducingtheenergylossandkineticcorrectionfactor,theequation(2-17)willbechangeto(2-18)(2-19)Notes:seep27,(1)across-sectionarea1and2shouldbeselectedalongthestreamlinedirectionoffluidflow……2.RealequationofBernoulli3.ApplicationexampleoftheequationofBernoulli
Example2-3TheVenturimetershownreducesthepipediameterfrom0.1mtoaminimumof0.05masshowninFig.2-11.Calculatetheflowrateandthemassfluxassumingidealconditions.Fig.2-11Venturemeter
3.ApplicationexampleoftheExample2-4.TrytoanalysetheconditionofapumpdrawingintooilfromareservoirbytheequationofBernoulli(Fig.2-12).Setthepressureat2-2across-sectionisp2,thepressureat1-1across-sectionisp1,andp1=pa.andthedistancefrompumporificetohydraulicoilsurfaceish.Fig.2-12SetupofhydraulicpumpExample2-4.Trytoanalyseth2.3.3Equationofmomentum-conservationofmomentumFig.2-13SketchofoilflowthroughapipelinewithapressurevesselFig.2-14Sketchofoilflowthroughapipeline
Fig.2-15SketchofoilthroughcurvedpassagesInanysystemofabove,therateofchangeofmomentuminthesystemequalsthenetappliedexternalforce.
Theequationlooksthesameastherelationship(2-20)(2-21)2.3.3Equationofmomentum-con
Assumeafrictionless,incompressibleliquidinacylindricalpassageasshowninFig.2-14.
Theforcebalanceis,fromequation(2-20):
Because
q=Av,so
(2-22)(2-23)(2-24)AssumeafrictionlesFig.2-15,isachangeinmomentumasdefinedinequation2-20.TheforcescanberesolvedintoacomponentFxwhichisaxialtotheinletdirectionandacomponentFywhichisnormaltotheinletdirection.
(2-25)Fig.2-15,isachangeinExample2-5.Fig.2-16showsasketchofaspoolvalve.Whenoilfluidflowthroughthevalve,calculate:theaxialeffectforceofoilfluidonthespoolsurface.Fig.2-16Hydraulicdynamiconthespoolvalve
Example2-5.Fig.2-16showsaExample2-6.Fig.2-17showsasketchofapoppetvalve,wherethepoppetcoreis2.Whenfluidrateflowqthroughthevalveunderthepressureandthefluidflowdirectionat
bothstatusesofout-flowingFig.2-17
aandin-flowingFig.2-17
b,calculate:actionforcemagnitudeanddirectiononthispoppetcore.Fig.2-17Hydraulicdynamiconthepoppetvalve
Example2-6.Fig.2-17showsaFortwocasesabovethefluidactionpressuresonthepoppetareallequaltoF.TheactiondirectionsareshowninFig.2-17aandFig.2-17brespectively.
FortheFig.2-17athefluiddynamicpressuremakesthepoppetorificestendtobeclosed,andfortheFig.2-17btendtobeopened.Soweshouldbeconsideredaccordingtothedetailstatusandcouldnotconsideralltendspoolorificetobeclosedinanyconditions.Fortwocasesabovethe2.4.1StatesoffluidflowandReynoldsnumber
2.4.2Lossesalongcircleparallelpipe2.4.3Minorlossesinpipesystem2.4CharacteristicsofFluidFlowinPipeline
2.4.1StatesoffluidflowanWhenacontinuityviscousfluidflowsthroughvariablesection,fluidwilllosepartsofenergy.Thiscanbepresentedbythepressurelosshwandkineticcorrectionfactor
,i.e.,intheabovementionedrealfluidBernoulli’sequation
herehwincludestwoparts:pressurelossesalongparallelpipesandminor(orlocal)losses.
2.4.1StatesoffluidflowandReynoldsnumber
therearethreemainstatesofflow,suchaslaminar,transitionandturbulentinapipe.NowtakeFig.2-18forexample.WhenacontinuityviscFig.2-18.SetupofReynoldstestTheexperimentprovedthat,Reynoldsnumber,isconsistedofthreeparameters.TheReynoldsnumberwasobservedtobearatiooftheinertialforcetotheviscousforce.(2-26)1-Overflowpipe2-Supplypipe3,6-Reservoir4,8-Checkvale5-Smallpipe7-LargepipeFig.2-18.SetupofReynoldstisacriticalvaluebetweenlaminarandturbulenceusuallydeterminedbyexperimentaldata.(showinTab.2-3)pipesRecrpipesRecrsmoothmetalpipe2320Smoothpipewitheccentricannularitygap1000hosepipe1600-2000Columnvalveorifice260smoothpipewithconcentricannularitygap1100Poppetvalveorifice20-100Tab.2-3FamiliarcriticalReynoldsnumberbasedondifferentpipematerialForflowinnoncircularducts
(2-27)HereRishydraulicradius,definedby:(2-28)isacriticalvalueb2.4.2
Lossesalongcircleparallelpipe
Thelossesduetoviscosityinequaldiameterpipeisreferredaslossesinparallelpipe,whichwillchangewiththedifferentflowingstates.Lossesinparallelpipeatlaminarflow
(1)Velocityprofileinalaminarpipeflow
Fig.2-19Laminarflowinacirclepipe2.4.2Lossesalongcirclepa(2-29)
Integrateitandundertheboundaryofu=0atr=R,weobtain
Itsaysthatvelocityprofileinalaminarpipeflowalongradiidirectionisaparabolaprofileandthemaximumvelocityisattheaxiscenterr=0andAsshowinFig.2-19,aforcebalanceinthex-directionyields,thusSetthen
(2-30)(2-29)AsshowinFig.2-19,a(2)Theflowrateinpipe
Formula(2-32)saysthattheaveragevelocityis1/2ofthemaximumvelocity.(2-32)(2-31)Integrateitweobtain(3)Averagevelocityinpipe
Accordingtothedefinitionofaveragevelocity,Fromformula(2-30)(2)TheflowrateinpipeForm(4)LossesalongcircleparallelpipeFromformula(2-32),thelossis
Dosomechange,Theformula(2-33)canbewrittenas(2-33)(2-34)
Whereistheresistancecoefficientalongacirclepipe.Intheory,,butinapracticalcase,forametalpipe,forahosepipebecauseinfluenceoftemperatureneedtobeconsidered.(4)LossesalongcircleparallWhenturbulenceflowhashappened,Theexperimenthasshownthatresistancecoefficientis
Here∆isrelatedwithmaterialofpipe,suchassteeltube0.04mm,copperpipe0.0015~0.01mm,aluminum0.0015~0.06mmandhosepipe0.03mm.2.Lossesinparallelpipeatturbulenceflow
Theresistancecoefficientcanbecalculatedbyexperimentalformulaasfollowsforwater-powerslipperypipe,
(2-35)(2-36)
Thevelocityiswelldistributionatturbulenceflow,themaximumvelocityasWhenturbulenceflowhas2.4.3Minorlossesinpipesystem
Usuallytheminorlossescanbecalculatedby
Thereasonsofminorlosses:(2-37)
Thenwecancalculatetheflowrateexcepttheratingratebypressurelossformula,(2-38)2.4.3Minorlossesinpipesy
Thetotalenergylossesinawholehydraulicsystemcanbesummedaftercalculatingoutseveralsection’slossesby
(2-39)
Thetotalenergylossesi2.5.1Thinwallorifice
2.5.2Stubbyorificeorslotorifice
2.5.3Plateclearance
2.5.4Cylinderannularclearance
2.5
FlowRateandPressureFeaturesofOrifice
2.5.1Thinwallorifice
.1Thinwallorifice
ThinwallorificedefinedastheradioofflowlengthLtodiameteroforificedislessthan0.5asshowninFig.2-20,usuallytheorificeissharpedged.Fig.2-20Fluidflowthroughorifice2.5.1ThinwallorificeFig.
Fortheorificebeforeandaftersection1-1and2-2,TheBernoulliequationis
Thenwecanobtain
Hereisthespeedcoefficient.
(2-40)(2-41)Fortheorificebef
Thefluidflowratethatflowsthroughthisorificeasbelow,Where:A0—theacross-sectionareaofthisorifice;
Cc—thesectioncontractioncoefficient,;Cd—flowratecoefficient,Cd=CvCc。(2-42)ThefluidflowratethaInthecaseofcompletecontraction,,canbecalculated
InthecaseofRe>105,=0.60~0.61inthecaseofincompletecontraction,canbeselectedbyTab.2-4Tab.2-4Flowratecoefficientsinincompletecontraction0.7Cd0.6020.6150.6340.6610.6960.7420.804
Thisisthereasonoflowresistancelosseswhenfluidflowsalongthelengthofthepipeinthinorifice.Ithaslesssensitivitytotemperature,andthinorificeisthususuallyusedtothrottleadjustor.Poppetandspoolvalveorificesaresimilartothethinorifice,sobothareallusedtothehydrauliccomponentorifices.(2-43)InthecaseofcompletecontraFig.2-21SketchofcylinderspoolorificeAisavalveseatBisaspoolcore
Theflowratethatflowthroughtheorificeiscalculatedbelowbyequationasfollow
Ifxv>>Cr,neglectCr,theflowrateas
TheflowratecoefficientcanbeobtainedbyFig.2-22,theReynoldsnumbercanbecalculatedbyfollowing,
(2-44)(2-45)(2-46)Fig.2-21SketchofcylinderAForahydraulicvalvewhateverflowinginorout,istheanglebetweenstreamlineandspoollineandiscalledspeeddirectionangle,itisusually.Fig.2-22Flowcoefficientontheorificeofspoolvalve
ForahydraulicvalvewhateThepoppetvalveorificeisshowninFig.2-23,Whenpoppetmovesupadistanceof,theaveragediameterof,,thentheflowrateis
Fig.2-23OrificeshapeofpoppetvalveFig.2-24Flowcoefficientofpoppetvalveorifice(2-47)WheretheflowratecoefficientcanbeobtainedbyFig.2-24Thepoppetvalveorificeissh2.5.2Stubbyorificeorslotorifice
Fig.2-25FlowratecoefficientsinStubbyorificeTheflowrateequationforslotorificeobeystheformula
(2-31),i.e.
Theflowrateequationforthestubbyorificeisthesameasformula(2-42),buttheflowratecoefficientcanbeobtainedfromthecurveinFig.2-25.Thestubbyorificeisdefinedas,slotorifice2.5.2Stubbyorificeorslot2.5.3
PlateclearanceFig.2-26FlowinparallelplainclearanceTheflowratefluidflowthroughtheplainplateclearanceis
(2-48)Theformula(2-48)hastwostatuses:1)Fluidflowatpressuredifferential:
(2-49)2)Fluidflowbyviscosityshear:(2-50)
ThefluidflowsunderpressuredifferentialandvelocityasshowninFig.2-PlateclearanceFig.2-2.5.4Cylinderannularclearance1.TheflowrateequationinaconcentricannularorificeFig.2-27showsasketchofconcentricclearanceflow
Fig.2-27SketchofconcentricclearanceflowLet’sconsiderannularclearanceexpandedalongthelengthdirectionisthesameasaplainplateclearance,sosubstitutingintoformula(2-48)
Ifthemotiondirectionofcylinderisthesameasthedirectionofpressuredifferential,thesymbolin(2-51)chooses“+”,otherwise“-”.theflowrateis(2-51)(2-52)2.5.4Cylinderannularcleara
asshowninFig.2-28,wecanabtainForverysmallclearances,isverysmalland,thenBecauseofsmallclearance,,
canbeconsideredasPlatesclearanceflow,theincrementalflowiswhereTheflowrateequationineccentricannularorifice
Fig.2-28Eccentricannularorifice(2-53)(2-54)(2-55)asshowninFig.2-28,wecanaIfe=h0,theflowisgreaterthanitwouldbeindicatedbytheuseofequation(2-51).Substitute(2-54)into(2-55)(2-56)(2-57)Integrating:Or
(2-58)Ife=h0,theflowisgreaterth3.TheflowratethroughaconicalannularclearanceBecauseofmachiningirregularities,suchaspistonorbore,valvecoreorseatcore,somedegreeofconicmustalwaysbeexpected,asshowninFig.2-29.Fig.2-29Fluidflowthroughaconicalannularclearancea)Converseconeb)Sequencecone
WhenitiscalledinversedegreeofconicasshowninFig.2-29a;
otherwisesequencedegreeofconicasshowninFig.2-29b3.TheflowratethroughaconForthestatusofFig.2-29a,substitutingintoformula(2-51),
Becauseh=h1+xtanθ,substitutingintoformula(2-59):Integratingandsubstitutinginto
Weobtaintheflowrateas
(2-59)(2-60)(2-61)(2-62)ForthestatusofFig.2-29a,When,flowrateis
Integratingformula(2-61)thepressuredistributioninthisclearanceflowing,andsubstitutingtheboundaryconditionath=h1,p=p1,weobtainSubstitutingformula(2-62)andinto(2-64),
,Whenu0=0,wehave
(2-64)(2-63)(2-65)(2-66)When,flowrate
ForthestatusofFig.2-29b,thesequencedegreeofconictheflowrateformulaisthesameastheformula(2-62),butpressuredistributionwhenis
or
(2-67)(2-68)ForthestatusofFig.2-4.HydrauliclockandforceIfthereisaeccentricity“e”betweenspoolcoreandseatduetosetting,asshowninFig.2-30.Eccentricwithinverseorderconicalannularb)Eccentricwithinorderconicalannularc)Sectionfigureatanypointd)SpoolcorenotchedbalancepressureFig.2-30Fluidflowthroughaconicalannularclearancewitheccentric4.HydrauliclockandforceThevalueof“h”atanypointis
(2-69)(1)Forthecaseofeccentricwithinverseorderconicalannularclearance(Fig.2-30a):thesideforceFwillenlargetheeccentricvalue“e”(Fig.2-30a)tomakethespoolcorelockedonthewallofseat.Since
,fromtheequation(2-66),thepressureatpointofislessthanthatat,i.e.(Fig.2-30c).
Thevalueof“h”atanypoint(2)Forthecaseofeccentricwithinverseorderconicalannularclearance(Fig.2-30b):thesideForceFwillbecreatedanditwillreducetheeccentricvalue“e”(Fig.2-30b)tomakethespoolcorecenteredintheseat.Infact,thehydrauliclockisobjectiveandwhatwecandoistotrytoeliminateit.Themostsimplemethodisbalancenotchesonthespoolcore.
(2)Forthecaseofeccentricw2.6.1Hydraulicshock2.6.2Cavitation2.6
HydraulicShockandCavitation
2.6.1Hydraulicshock2.6Hyd2.6.1HydraulicShockHydraulicshockanddamagesThetypesofhydraulicshock
(1)Thatoccursduetothesuddenreductionoftheacross-sectionoftheorificeorchangeoftheflowdirection;(2)Thatresultsfromtheinertiaofthehighspeedworkingcomponentssuddenlybrakingorchangingdirection.2.6.1HydraulicShockHydrauli
1)Hydraulicshockresultsfromfluidflowstoppingsuddenly
Fig.2-31Hydraulicimpact
(2-70)
Thefluidflowisstoppedsuddenlywhenthecheckvalveisclosedsuddenly.Accordingtoconservationofenergy,So
1)HydraulicshockresultsfrSpreadspeedofshockwaveinpipecanbecalculatedby
(2-71)Formula(2-72)isinitituledthewholehydraulicshocksituation.Thepressurepeakvalueatnon-wholehydraulicshockislessthanthewholehydraulicshockanditcanbecalculatedby
(2-73)Formula(2-70)isonlyusedtotheclosedpipe,i.e.,thetimetofthecheckvalveclosedislessthanthetime(timeofcriticalclose).
(2-72)Spreadspeedofshockwavein2)Hydraulicshockresultesfromthemotionpartsbrakedaccordingtotheconservationofmomentum,thesystemshockpressurecanbecalculated:
Example2-7.Iftheinnerdiameterofpipeisd=200mm,thewallthickness10mm,theinitializationspeed,pressure,thebulkmodulusofelasticityoffluidMPa,themodulusofelasticityofpipematerialMPa.Calculatethemaximumpressuredropwhenthecheckvalveisclosedsuddenly.
2)Hydraulicshockresultesfr
Measurestoreducethehydraulicshock1)Prolongthetimeclosingcheckandmotioncomponents.2)Valveorificeofmotionworking-pieceisdesignedaccuratelymakingspeeduniformitychange.Expandproperlythediameterofpipe.Trytoshortenthelengthofpipe.Utilizerubbertubeoraccumulatoratpointofhydraulicshock.Measurestoreducethehydrau2.6.2Cavitatation
1.Theprincipleandharmofcavitation
Theprincipleofcavitation:Thephenomenonofcavitationhappenseasilyinsuctionofpumpandvalveorifice.
harm:air-corrosionwhichwilldamageworking-piecesofhydraulicmachineryandshortenthemachine’slife.2.6.2Cavitatation1.ThepriThemeasuretodecreasetheCavitation
1)Reducingthepressuredrop,usuallythespecialpressureiscontrolledp1/p2<3.5.2)Whendesignitisbetterfortryingtoavoidnarrow,elboworsuddendirect
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国饲料中间体化学品行业头部企业市场占有率及排名调研报告
- 2025-2030全球高速标签打印机行业调研及趋势分析报告
- 2025年全球及中国汽车座椅加热通风线束行业头部企业市场占有率及排名调研报告
- 2025-2030全球条形码库存管理系统行业调研及趋势分析报告
- 2025-2030全球生物基电池行业调研及趋势分析报告
- 2025年全球及中国农场畜牧管理软件行业头部企业市场占有率及排名调研报告
- 2025-2030全球印刷级热敏纸行业调研及趋势分析报告
- 担保函保证合同
- 2025监控售后维修合同
- 房屋买卖合同范文
- 河南2025年河南职业技术学院招聘30人笔试历年参考题库附带答案详解
- 成人氧气吸入疗法-中华护理学会团体标准
- 北方春节的十大风俗
- 婚介公司红娘管理制度
- 煤矿电气试验规程
- JCT796-2013 回弹仪评定烧结普通砖强度等级的方法
- 物业客服培训课件PPT模板
- 员工工资条模板
- 火力发电厂节能管理制度实施细则
- 华为携手深圳国际会展中心创建世界一流展馆
- 2023版思想道德与法治专题2 领悟人生真谛 把握人生方向 第3讲 创造有意义的人生
评论
0/150
提交评论