2021-2022学年安徽省滁州市乌衣高级职业中学高一数学理下学期期末试题含解析_第1页
2021-2022学年安徽省滁州市乌衣高级职业中学高一数学理下学期期末试题含解析_第2页
2021-2022学年安徽省滁州市乌衣高级职业中学高一数学理下学期期末试题含解析_第3页
2021-2022学年安徽省滁州市乌衣高级职业中学高一数学理下学期期末试题含解析_第4页
2021-2022学年安徽省滁州市乌衣高级职业中学高一数学理下学期期末试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年安徽省滁州市乌衣高级职业中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在中,点为边的中点,则向量(

)A.

B.

C.

D.参考答案:A2.若函数在区间上的图象为连续不断的一条曲线,则下列说法正确的是(

)A.若,不存在实数使得;B.若,存在且只存在一个实数使得;C.若,有可能存在实数使得;D.若,有可能不存在实数使得参考答案:C略3.空间一点到三条两两垂直的射线的距离分别是,且垂足分别是,则三棱锥的体积为

A、

B、

C、

D、参考答案:D4.设集合,则等于(

)A.

B.

C.

D.参考答案:A略5.下列函数中,是奇函数且在区间(﹣∞,0)上为增函数的是(

)A.y=x3+3 B.y=x3 C.y=x﹣1 D.y=ex参考答案:B【考点】函数奇偶性的判断;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】根据函数奇偶性和单调性的定义进行判断即可.【解答】解:=x3+3是增函数,为非奇非偶函数,不满足条件y=x3在定义域内既是奇函数又是增函数的,满足条件.y=x﹣1在定义域内是奇函数,则在区间(﹣∞,0)上为减函数,不满足条件.y=ex为增函数,为非奇非偶函数,不满足条件.故选:B【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握掌握常见函数的奇偶性和单调性的性质.6.如下图所示,阴影部分表示的集合是(

)A.B.

C.D.参考答案:A略7.设函数f(x)=cos(x+),则下列结论错误的是A.f(x)的一个周期为?2π

B.y=f(x)的图像关于直线x=对称C.f(x+π)的一个零点为x=

D.f(x)在(,π)单调递减参考答案:Df(x)的最小正周期为2π,易知A正确;f=cos=cos3π=-1,为f(x)的最小值,故B正确;∵f(x+π)=cos=-cos,∴f=-cos=-cos=0,故C正确;由于f=cos=cosπ=-1,为f(x)的最小值,故f(x)在上不单调,故D错误.故选D.8.已知向量a=(3,2),b=(x,4),且a∥b,则x的值为(

)A.6

B.-6

C.

D.参考答案:A9.(5分)下列函数是偶函数,且在(﹣∞,0)上单调递减的是() A. B. y=1﹣x2 C. y=1﹣2x D. y=|x|参考答案:D考点: 奇偶性与单调性的综合.专题: 函数的性质及应用.分析: 根据反比例函数的图象和性质,可以分析出A答案中函数的奇偶性和在(﹣∞,0)上的单调性:根据二次函数的图象和性质,可以分析出B答案中函数的奇偶性和在(﹣∞,0)上的单调性:根据一次函数的图象和性质,可以分析出C答案中函数的奇偶性和在(﹣∞,0)上的单调性:根据正比例函数的图象和性质,及函数图象的对折变换法则,可以分析出D答案中函数的奇偶性和在(﹣∞,0)上的单调性.解答: 函数为奇函数,在(﹣∞,0)上单调递减;函数y=1﹣x2为偶函数,在(﹣∞,0)上单调递增;函数y=1﹣2x为非奇非偶函数,在(﹣∞,0)上单调递减;函数y=|x|为偶函数,在(﹣∞,0)上单调递减故选D点评: 本题考查的知识点是函数的单调性和函数的奇偶性,其中熟练掌握各种基本初等函数的奇偶性和单调性是解答的关键.10.化简(

)(A)

(B)

(C)

(D)参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.若[x]表示不超过x的最大整数,则[lg2]+[lg3]+…+lg[2017]+[lg]+[lg]+…+[lg]=

.参考答案:﹣2013【考点】数列的求和.【分析】分类讨论,当2≤n≤9时,[lgn]=0;当10≤n≤99时,[lgn]=1;当100≤n≤999时,[lgn]=2;当1000≤n≤9999时,[lgn]=3;当≤≤,[lg]=﹣1;当≤≤时,[lg]=﹣2;当≤≤时,[lg]=﹣3;当≤≤时,[lg]=﹣4.从而分别求和即可.【解答】解:当2≤n≤9时,[lgn]=0,当10≤n≤99时,[lgn]=1,当100≤n≤999时,[lgn]=2,当1000≤n≤9999时,[lgn]=3,故[lg2]+[lg3]+…+[lg2016]+[2017]=0×8+1×90+2×900+3×1018=90+1800+3054=4944;当≤≤,[lg]=﹣1;当≤≤时,[lg]=﹣2;当≤≤时,[lg]=﹣3;当≤≤时,[lg]=﹣4.则[lg]+[lg]+…+[lg]=(﹣1)×9+(﹣2)×90+(﹣3)×900+(﹣4)×1017=﹣6957,故原式=4944﹣6957=﹣2013.故答案为:﹣2013.【点评】本题以新定义为载体,主要考查了对数函数值的基本运算,解题的关键:是对对数值准确取整的计算与理解.12.已知

()参考答案:C略13.现测得(x,y)的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y=x2+1,乙:y=3x﹣1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为函数模型.参考答案:甲【考点】根据实际问题选择函数类型.【分析】将点的坐标代入验证,即可得到结论.【解答】解:甲:y=x2+1,(1,2),(2,5)代入验证满足,x=3时,y=10;乙:y=3x﹣1,(1,2),(2,5)代入验证满足,x=3时,y=8∵测得(x,y)的一组对应值为(3,10.2),∴选甲.故答案为:甲14.如右图所示,函数的图象是折线段,其中的坐标分别为,则该函数的零点是

参考答案:

15.对任意两个集合,定义,,记,,则____________.参考答案:16.函数的定义域是____________________参考答案:17.函数的定义域是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,.(I)求证:EF∥平面ABCD;(II)求证:平面ACF⊥平面BDF.参考答案:(Ⅰ)见解析;(Ⅱ)见解析.(1)添加辅助线,通过证明线线平行来证明线面平行.(2)通过证明线面垂直面,来证明面面.(Ⅰ)证明:如图,过点作于,连接,∴.∵平面⊥平面,平面,平面平面,∴⊥平面,又∵⊥平面,,∴,.∴四边形为平行四边形.∴.∵平面,平面,∴平面.

(Ⅱ)证明:面,,又四边形是菱形,,又,面,又面,从而面面.点晴:本题考查的是空间线面的平行和垂直关系.第一问要考查的是线面平行,通过先证明,得四边形为平行四边形.证得,可得平面,这里对于线面平行的条件平面,平面要写全;第二问中通过先证明面,再结合面,从而面面.19.(12分)(1)化简:当<α<2π时,;(2)求值:tan10°+tan50°+tan10°tan50°.参考答案:考点: 两角和与差的正切函数;三角函数的化简求值.专题: 三角函数的求值.分析: (1)利用余弦的倍角公式进行化简即可;(2)直接根据两角和正切公式的变形形式tan(α+β)(1﹣tanαtanβ)=tanα+tanβ;整理即可得到答案.解答: (1)∵<α<2π,∴<<π,则=====﹣cos;(2)∵tan10°+tan50°+tan10°tan50°=tan(10°+50°)(1﹣tan10°tan50°)+tan10°tan50°=(1﹣tan10°tan50°)+tan10°tan50°=﹣tan10°tan50°+tan10°tan50°=.点评: 本题主要考查两角和与差的正切公式以及二倍角公式的应用.要求熟练掌握相应的公式.20.不用计算器求下列各式的值(1)(2)参考答案:【考点】对数的运算性质;有理数指数幂的化简求值.【分析】(1)化带分数为假分数,化小数为分数,然后把和分别写成和的形式,利用有理指数幂的运算性质化简后通分计算;(2)利用对数的和等于乘积的对数得到lg5+lg2=1,把化为﹣3﹣1,然后利用有理指数幂的运算性质化简求值.【解答】解:(1)====;(2)==1﹣9+1+3=﹣4.【点评】本题考查了对数的运算性质,考查了有理指数幂的化简与求值,关键是熟记有关的运算性质,是基础的计算题.21.如图,在平面直角坐标系xOy中,已知圆C:.⑴若圆E的半径为2,圆E与x轴相切且与圆C外切,求圆E的标准方程;⑵若过原点O的直线l与圆C相交于A、B两点,且,求直线l的方程.参考答案:(1)或(2)【分析】(1)设出圆的标准方程为,由圆与轴相切,可得,由圆与圆外切,可得两圆心距等于半径之和,由此解出,,的值,得到圆的标准方程;(2)法一:设出点坐标为,根据,可得到点坐标,把、两点坐标代入圆方程,解出点坐标,即可得到直线的方程;法二:设的中点为,连结,,设出直线的方程,由题求出的长,利用点到直线的距离即可得求出值,从而得到直线的方程【详解】⑴设圆的标准方程为,故圆心坐标为,半径;因为圆的半径为2,与轴相切,所以①因为圆与圆外切所以,即②

由①②解得

故圆的标准方程为或⑵方法一;设因为,所以为的中点,从而因为,都在圆上所以解得或故直线的方程为:方法二:设的中点为,连结,设,因为,所以在中,③在中,④由③④解得由题可知直线的斜率一定存在,设直线的方程为则,解得故直线的方程为【点睛】本题考查圆的标准方程与直线方程,解题关键是设出方程,找出关系式,属于中档题。22.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,底面三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论