湖南省长沙市铁路第一中学2022-2023学年数学九年级上册期末质量跟踪监视模拟试题含解析_第1页
湖南省长沙市铁路第一中学2022-2023学年数学九年级上册期末质量跟踪监视模拟试题含解析_第2页
湖南省长沙市铁路第一中学2022-2023学年数学九年级上册期末质量跟踪监视模拟试题含解析_第3页
湖南省长沙市铁路第一中学2022-2023学年数学九年级上册期末质量跟踪监视模拟试题含解析_第4页
湖南省长沙市铁路第一中学2022-2023学年数学九年级上册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A. B. C. D.2.如图,△ABC的顶点都在方格纸的格点上,那么的值为()A. B. C. D.3.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个4.如图所示,△ABC内接于⊙O,∠C=45°.AB=4,则⊙O的半径为()A. B.4C. D.55.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为()A. B. C. D.6.如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于()A.65° B.60° C.55° D.50°7.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=28º,则∠P的度数是()A.50º B.58ºC.56º D.55º8.已知函数,当时,<x<,则函数的图象可能是下图中的()A. B.C. D.9.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A. B. C. D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=(c≠0)在同一平面直角坐标系中的图象大致是()A. B.C. D.11.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为πcm2,则扇形圆心角的度数为()A.120° B.140° C.150° D.160°12.如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=()A.25° B.30° C.40° D.60°二、填空题(每题4分,共24分)13.已知函数是反比例函数,则的值为__________.14.顺次连接矩形各边中点所得四边形为_____.15.如图,在正方形中,,将绕点顺时针旋转得到,此时与交于点,则的长度为___________.16.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____.17.函数,其中是的反比例函数,则的值是__________.18.已知二次函数y=ax2-bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是_________;若a+b的值为非零整数,则b的值为_________.三、解答题(共78分)19.(8分)如图,⊙O的半径为,A、B为⊙O上两点,C为⊙O内一点,AC⊥BC,AC=,BC=.(1)判断点O、C、B的位置关系;(2)求图中阴影部分的面积.20.(8分)已知二次函数图象的顶点在原点,对称轴为轴.直线的图象与二次函数的图象交于点和点(点在点的左侧)(1)求的值及直线解析式;(2)若过点的直线平行于直线且直线与二次函数图象只有一个交点,求交点的坐标.21.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲乙(1)写出表格中的值:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?22.(10分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?23.(10分)阅读理解,我们已经学习了点和圆、直线和圆的位置关系以及各种位置关系的数量表示,如下表:类似于研究点和圆、直线和圆的位置关系,我们也可以用两圆的半径和两圆的圆心距(两圆圆心的距离)来刻画两圆的位置关系.如果两圆的半径分别为和(r1>r2),圆心距为d,请你通过画图,并利用d与和之间的数量关系探索两圆的位置关系.图形表示(圆和圆的位置关系)数量表示(圆心距d与两圆的半径、的数量关系)24.(10分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.25.(12分)一个不透明的口袋中装有红、白两种颜色的小球(除颜色外其余都相同),其中红球3个,白球1个.(1)求任意摸出一球是白球的概率;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用画树状图或列表的方法求两次摸出都是红球的概率.26.如图,抛物线经过,两点,且与轴交于点,抛物线与直线交于,两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点,使得是以为底边的等腰三角形?若存在,请直接写出点的坐标;若不存在,说明理由.(3)点在轴上且位于点的左侧,若以,,为顶点的三角形与相似,求点的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论;当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,观察只有B选项符合,故选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.2、D【分析】把∠A置于直角三角形中,进而求得对边与斜边之比即可.【详解】解:如图所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故选D.【点睛】本题考查了锐角三角函数的定义;合理构造直角三角形是解题关键.3、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.4、A【解析】试题解析:连接OA,OB.∴在中,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.5、D【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为2的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率.【详解】∵点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,∴连接两点所得的所有线段总数n==15条,∵取到长度为2的线段有:FC、AD、EB共3条∴在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为:p=.故选:D【点睛】此题主要考查了正多边形和圆以及几何概率,正确利用正六边形的性质得出AD的长是解题关键.6、A【分析】连结BD,由于点D是的中点,即,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.【详解】解:连结BD,如图,∵点D是的中点,即,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选:A.【点睛】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.7、C【分析】利用切线长定理可得切线的性质的PA=PB,,则,,再利用互余计算出,然后在根据三角形内角和计算出的度数.【详解】解:∵PA,PB是⊙O的切线,A,B为切点,∴PA=PB,,∴在△ABP中∴故选:C.【点睛】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键.8、A【分析】先可判定a<0,可知=,=,可得∴a=6b,a=-6c,不妨设c=1,进而求出解析式,找出符合要求的答案即可.【详解】解:∵函数,当时,<x<,,∴可判定a<0,可知=+=,=×=∴a=6b,a=-6c,则b=-c,不妨设c=1,则函数为函数,即y=(x-2)(x+3),∴可判断函数的图像与x轴的交点坐标是(2,0),(-3,0),∴A选项是正确的.故选A.【点睛】本题考查抛物线和x轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键.9、B【分析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.10、D【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的左侧可知b>0,再由函数图象交y轴的负半轴可知c<0,然后根据一次函数的性质和反比例函数的性质即可得出正确答案.【详解】∵二次函数的图象开口向上,对称轴在y轴的左侧,函数图象交于y轴的负半轴∴a>0,b>0,c<0,∴反比例函数y=的图象必在二、四象限;一次函数y=ax﹣2b一定经过一三四象限,故选:D.【点睛】此题主要考查二次函数与反比例函数的图像与性质,解题的关键是熟知二次函数各系数与图像的关系.11、C【解析】根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为πcm2,∴,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=.12、B【分析】先根据直角三角形斜边上的中线性质得AB1=BB1,再根据旋转的性质得AB1=AB,旋转角等于∠BAB1,则可判断△ABB1为等边三角形,所以∠BAB1=60°,从而得出结论.【详解】解:∵点B1为斜边BC的中点,∴AB1=BB1,∵△ABC绕直角顶点A顺时针旋转到△AB1C1的位置,∴AB1=AB,旋转角等于∠BAB1,∴AB1=BB1=AB,∴△ABB1为等边三角形,∴∠BAB1=60°.∴∠B1AC=90°﹣60°=30°.故选:B.【点睛】本题主要考察旋转的性质,解题关键是判断出△ABB1为等边三角形.二、填空题(每题4分,共24分)13、1【分析】根据反比例函数的定义列出方程,然后解一元二次方程即可.【详解】解:根据题意得,n2﹣2=﹣1且n+1≠0,整理得,n2=1且n+1≠0,解得n=1.故答案为:1.【点睛】本题考查了反比例函数的定义,反比例函数解析式的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14、菱形【详解】解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故答案为菱形.考点:三角形中位线定理;菱形的判定;矩形的性质.15、【分析】利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.【详解】解:由题意可得出:∠BDC=45°,∠DA′E=90°,

∴∠DEA′=45°,

∴A′D=A′E,

∵在正方形ABCD中,AD=1,

∴AB=A′B=1,

∴BD=,

∴A′D=,

∴在Rt△DA′E中,DE=.故答案为:.【点睛】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.16、【分析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得.【详解】解:列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为,故答案为.【点睛】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.17、【分析】根据反比例函数的定义知m1-5=-1,且m-1≠0,据此可以求得m的值.【详解】∵y=(m-1)x

m1−5是y关于x的反比例函数,∴m1-5=-1,且m-1≠0,∴(m+1)(m-1)=0,且m-1≠0,∴m+1=0,即m=-1;故答案为:-1.【点睛】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx-1(k≠0)的形式.18、【分析】根据题意可得a<0,再由可以得到b>0,把(1,0)函数得a−b+2=0,导出b和a的关系,从而解出a的范围,再根据a+b的值为非零整数的限制条件,从而得到a,b的值.【详解】依题意知a<0,,a−b+2=0,故b>0,且b=a+2,a=b−2,a+b=a+a+2=2a+2,∴a+2>0,∴−2<a<0,∴−2<2a+2<2,∵a+b的值为非零实数,∴a+b的值为−1,1,∴2a+2=−1或2a+2=1,或,∵b=a+2,或三、解答题(共78分)19、(1)O、C、B三点在一条直线上,见解析;(2)【分析】(1)连接OA、OB、OC,证明∠ABC=∠ABO=60°,从而证得O、C、B三点在一条直线上;(2)利用扇形面积与三角形面积的差即可求得答案.【详解】(1)答:O、C、B三点在一条直线上.证明如下:连接OA、OB、OC,在中,,∵∴∠ABC=60°,在中,∵OA=OB=AB,∴△OAB是等边三角形,∴∠ABO=60°,故点C在线段OB上,即O、C、B三点在一条直线上.(2)如图,由(1)得:△OAB是等边三角形,∴∠O=60°,∴.【点睛】本题考查了扇形面积公式与三角形面积公式,勾股定理、特殊角的三角函数值,利用证明∠ABC=∠ABO=60°,证得O、C、B三点在一条直线上是解题的关键.20、(1)m=,;(2)【分析】(1)由于抛物线的顶点为原点,因此可设其解析式为y=ax2,直接将A点,B点的坐标代入抛物线中即可求出抛物线的解析式以及m的值,进而可知出点B的坐标,再将A,B点的坐标代入一次函数中,即可求出一次函数的解析式.(2)根据题意可知直线l2的解析式,由抛物线与l2只有一个交点,联立直线与二次函数的解析式,消去y,得出一个含x一元二次方程,根据方程的判别式为0可求得n的值,进而得出结果.【详解】(1)解:假设二次函数的解析式为,将分别代入二次函数的解析式,得:,解得.解得:.将代入中,得,,解得:.的解析式为.(2)由题意可知:l2∥l1,可设直线的解析式为:过点,则有:..由题意,联立直线与二次函数的解析式,可得以下方程组:,消元,得:,整理,得:,①由题意,得与只有一个交点,可得:,解得:.将代回方程①中,得.将代入中,得.可得交点坐标为.【点睛】此题主要考查了求二次函数解析式,求一次函数解析式,以及两函数的交点问题,解决问题的关键是联立方程组求解.21、(1),,,;(2)选择乙,理由见解析【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【详解】解:(1)甲的平均成绩(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数(环),又∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的众数:c=8(环)其方差为:=×(16+9+1+0+3+4+9)==;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.22、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【详解】解:(1)∵,∴抛物线的顶点式为.∴喷出的水流距水平面的最大高度是4米.(2)∵两抛物线的关于y轴对称∴左边抛物线的a=-1,顶点坐标为(-1,4)左边抛物线的表达式为.(3)将代入,则得,解得,(求抛物线与x轴的右交点,故不合题意,舍去).∵(米)∴水池的直径至少要6米.【点睛】此题考查的是二次函数的应用,掌握将二次函数的一般式转化为顶点式、利用顶点式求二次函数的解析式和求抛物线与x轴的交点坐标是解决此题的关键.23、见解析【分析】两圆的位置关系可以从两圆公共点的个数来考虑.两圆无公共点(即公共点的个数为0个),1个公共点,2个公共点,或者通过平移实验直观的探索两圆的相对位置,最后得出答案.初中阶段不考虑重合的情况;【详解】解:如图,连接,设的半径为,的半径为圆和圆的位置关系(图形表示)数量表示(圆心距d与两圆的半径r1、r2的数量关系)【点睛】本题考查两圆的五种位置关系.经历探索两个圆之间位置关系的过程,训练学生的探索能力;通过平移实验直观的探索两个圆之间位置关系,发展学生的识图能力和动手操作能力.从“形”到“数”和从“数”到“形”的转化是理解本题的关键.24、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【分析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可.【详解】解:(1)把点A(﹣1,6)代入反比例函数(m≠0)得:m=﹣1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论