版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.圆锥的底面半径是,母线为,则它的侧面积是()A. B. C. D.2.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A. B. C. D.3.已知二次函数y=mx2+x+m(m-2)的图像经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定4.下列图形中,是中心对称图形的是()A. B. C. D.5.如图,点C在弧ACB上,若∠OAB=20°,则∠ACB的度数为()A. B. C. D.6.已知点P(1,-3)在反比例函数的图象上,则的值是A.3 B.-3 C. D.7.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差 B.平均数 C.众数 D.中位数8.池塘中放养了鲤鱼2000条,鲢鱼若干条,在几次随机捕捞中,共捕到鲤鱼200条,鲢鱼300条,估计池塘中原来放养了鲢鱼()A.10000条 B.2000条 C.3000条 D.4000条9.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A. B. C. D.10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得()个馒头A.25 B.72 C.75 D.90二、填空题(每小题3分,共24分)11.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.12.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.13.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.14.如图,圆形纸片⊙O半径为5,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则4个小正方形的面积和为_______.15.抛物线关于x轴对称的抛物线解析式为_______________.16.阅读材料:一元二次方程的两个根是-2,3,画出二次函数的图象如图,位于轴上方的图象上点的纵坐标满足,所以不等式点的横坐标的取值范围是,则不等式解是.仿照例子,运用上面的方法解不等式的解是___________.17.若△ABC∽△A′B′C′,且,△ABC的周长为12cm,则△A′B′C′的周长为_____________.18.共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为_____.三、解答题(共66分)19.(10分)(1)问题发现如图1,在中,,点为的中点,以为一边作正方形,点恰好与点重合,则线段与的数量关系为______________;(2)拓展探究在(1)的条件下,如果正方形绕点旋转,连接,线段与的数量关系有无变化?请仅就图2的情形进行说明;(3)问题解决.当正方形旋转到三点共线时,直接写出线段的长.20.(6分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.(1)画出关于轴的对称图形;(2)将以为旋转中心顺时针旋转90°得到,画出旋转后的图形,并求出旋转过程中线段扫过的扇形面积.21.(6分)已知二次函数.用配方法将其化为的形式;在所给的平面直角坐标系xOy中,画出它的图象.22.(8分)已知等边△ABC的边长为2,(1)如图1,在边BC上有一个动点P,在边AC上有一个动点D,满足∠APD=60°,求证:△ABP~△PCD(2)如图2,若点P在射线BC上运动,点D在直线AC上,满足∠APD=120°,当PC=1时,求AD的长(3)在(2)的条件下,将点D绕点C逆时针旋转120°到点D',如图3,求△D′AP的面积.23.(8分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.24.(8分)如图,AB是⊙O的直径,弦EF⊥AB于点C,点D是AB延长线上一点,∠A=30°,∠D=30°.(1)求证:FD是⊙O的切线;(2)取BE的中点M,连接MF,若⊙O的半径为2,求MF的长.25.(10分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别家庭藏书m本学生人数A0≤m≤2520B26≤m≤50aC51≤m≤7550Dm≥7666根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是;(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数.26.(10分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E,(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据圆锥的侧面积=底面周长×母线长计算.【详解】圆锥的侧面面积=×6×5=15cm1.故选:A.【点睛】本题考查圆锥的侧面积=底面周长×母线长,解题的关键是熟知公式的运用.2、C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:
∵共有27种等可能的结果,构成等腰三角形的有15种情况,
∴以a、b、c为边长正好构成等腰三角形的概率是:.
故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3、C【分析】根据题意将(0,0)代入解析式,得出关于m的方程,解之得出m的值,由二次函数的定义进行分析可得答案.【详解】解:∵二次函数y=mx1+x+m(m-1)的图象经过原点,∴将(0,0)代入解析式,得:m(m-1)=0,解得:m=0或m=1,又∵二次函数的二次项系数m≠0,∴m=1.故选:C.【点睛】本题考查二次函数图象上点的坐标特征以及二次函数的定义,熟练掌握二次函数图象上的点满足函数解析式及二次函数的定义是解题的关键.4、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】本题考查的知识点是中心对称图形,掌握中心对称图形的定义是解此题的关键.5、C【分析】根据圆周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度数.【详解】解:∵∠ACB=∠AOB,
而∠AOB=180°-2×20°=140°,
∴∠ACB=×140°=70°.
故选:C.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.6、B【解析】根据点在曲线上,点的坐标满足方程的关系,将P(1,-1)代入,得,解得k=-1.故选B.7、A【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差8、C【分析】根据题意求出鲤鱼与鲢鱼的比值,进而利用池塘中放养了鲤鱼2000条除以鲤鱼与鲢鱼的比值即可估计池塘中原来放养了鲢鱼的条数.【详解】解:由题意可知鲤鱼与鲢鱼的比值为:,所以池塘中原来放养了鲢鱼:(条).故选:C.【点睛】本题考查的是通过样本去估计总体,熟练掌握通过样本去估计总体的方法,只需将样本“成比例地放大”为总体即可.9、B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.10、C【分析】设有x个大和尚,则有(100-x)个小和尚,根据馒头数=3×大和尚人数+×小和尚人数结合共分100个馒头,即可得出关于x的一元一次方程,解之即可得出结论;【详解】解:设有x个大和尚,则有(100−x)个小和尚,依题意,得:3x+(100−x)=100,解得:x=25,∴3x=75;故选:C.【点睛】本题主要考查了一元一次方程的应用,掌握一元一次方程的应用是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】连接BD.根据圆周角定理可得.【详解】解:如图,连接BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【点睛】考核知识点:圆周角定理.理解定义是关键.12、300π【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则=20π,解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π考点:(1)、圆锥的计算;(2)、扇形面积的计算13、1【分析】根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.【详解】解:∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案为1.【点睛】此题考查旋转的性质,即图形旋转后与原图形全等.14、16【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4个小正方形的面积和.【详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD为等腰直角三角形,∵⊙O半径为5,根据垂径定理得:∴OD=CD==5,设小正方形的边长为x,则AB=,则在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四个小正方形的面积和=.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.15、【分析】由关于x轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线的顶点关于x轴对称的顶点,关于x轴对称,则开口方向与原来相反,得出二次项系数,最后写出对称后的抛物线解析式即可.【详解】解:抛物线的顶点为(3,-1),点(3,-1)关于x轴对称的点为(3,1),又∵关于x轴对称,则开口方向与原来相反,所以,∴抛物线关于x轴对称的抛物线解析式为.故答案为:.【点睛】本题考查了二次函数的图象与几何变换,解题的关键是抓住关于x轴对称点的特点.16、【分析】根据题意可先求出一元二次方程的两个根是1,3,画出二次函数的图象,位于轴上方的图象上点的纵坐标满足,即可得解.【详解】解:根据题意可得出一元二次方程的两个根是1,3,画出二次函数的图象如下图,因此,不等式的解是.故答案为:.【点睛】本题考查的知识点是二次函数与不等式的解,理解题意,找出求解的步骤是解此题的关键.17、16cm【分析】根据相似三角形周长的比等于相似比求解.【详解】解:∵△ABC∽△A′B′C′,且,即相似三角形的相似比为,
∵△ABC的周长为12cm
∴△A′B′C′的周长为12÷=16cm.故答案为:16.【点睛】此题考查相似三角形的性质,解题关键在于掌握相似三角形周长的比等于相似比.18、2.4×1【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将240000用科学记数法表示为:2.4×1.故答案为2.4×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题(共66分)19、(1);(2)无变化,说明见详解;(3)或【分析】(1)先利用等腰直角三角形的性质得出AB=AD,再得出AD=AF,即可得出结论;
(2)先利用等腰直角三角形和正方形的性质得:,并证明夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分当点E在线段BF上时和当点E在线段BF的延长线上时讨论即可求得线段的长.【详解】解:(1)在Rt△ABC中,AB=AC,
∵D是BC的中点,
∴AD=BC=BD,AD⊥BC,
∴△ABD是等腰直角三角形,
∴AB=AD,
∵正方形CDEF,
∴DE=EF,
当点E恰好与点A重合,
∴AB=AD=AF,即BE=AF,
故答案为:BE=AF;(2)无变化;如图2,在中,∴,∴在正方形中,在中,∴∵∴在和中∴∽∴∴线段和的数量关系无变化.(3)或.当点E在线段BF上时,如图2,∵正方形,由(1)知AB=AD=AF,∴CF=EF=CD=2,在Rt△BCF中,CF=2,BC=4,根据勾股定理得,BF=,∴BE=BF-EF=-2,由(2)得,,∴AF=;当点E在线段BF的延长线上时,如图,同理可得,BF=,BE=BF+EF=+2,∴AF=,综上所述,当正方形旋转到三点共线时,线段的长为或.【点睛】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,解题的键是判断出△ACF∽△BCE.20、(1)见解析;(2)见解析,【分析】(1)根据图形对称的性质,关于轴对称,相等,互为相反数.(2)根据扇形的面积S=即可解得.【详解】解:(1)(2)【点睛】本题考查图形的对称,扇形的面积公式.21、(1);(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可;(2)利用描点法画出二次函数图象即可.【详解】解:==,顶点坐标为,对称轴方程为.函数二次函数的开口向上,顶点坐标为,与x轴的交点为,,其图象为:故答案为(1);(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.22、(1)见解析;(2);(3)【分析】(1)先利用三角形的内角和得出∠BAP+∠APB=120°,再用平角得出∠APB+∠CPD=120°,进而得出∠BAP=∠CPD,即可得出结论;(2)先构造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,进而求出AP,再判断出△ACP∽∠APD,得出比例式即可得出结论;(3)先求出CD,进而得出CD',再构造出直角三角形求出D'H,进而得出D'G,再求出AM,最后用面积差即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,在△ABP中,∠B+∠APB+∠BAP=180°,∴∠BAP+∠APB=120°,∵∠APB+∠CPD=180°﹣∠APD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;(2)如图2,过点P作PE⊥AC于E,∴∠AEP=90°,∵△ABC是等边三角形,∴AC=2,∠ACB=60°,∴∠PCE=60°,在Rt△CPE中,CP=1,∠CPE=90°﹣∠PCE=30°,∴CE=CP=,根据勾股定理得,PE=,在Rt△APE中,AE=AC+CE=2+=,根据勾股定理得,AP2=AE2+PE2=7,∵∠ACB=60°,∴∠ACP=120°=∠APD,∵∠CAP=∠PAD,∴△ACP∽△APD,∴,∴AD==;(3)如图3,由(2)知,AD=,∵AC=2,∴CD=AD﹣AC=,由旋转知,∠DCD'=120°,CD'=CD=,∵∠DCP=60°,∴∠ACD'=∠DCP=60°,过点D'作D'H⊥CP于H,在Rt△CHD'中,CH=CD'=,根据勾股定理得,D'H=CH=,过点D'作D'G⊥AC于G,∵∠ACD'=∠PCD',∴D'G=D'H=(角平分线定理),∴S四边形ACPD'=S△ACD'+S△PCD'=AC•D'G+CP•DH'=×2×+×1×=,过点A作AM⊥BC于M,∵AB=AC,∴BM=BC=1,在Rt△ABM中,根据勾股定理得,AM=BM=,∴S△ACP=CP•AM=×1×=,∴S△D'AP=S四边形ACPD'﹣S△ACP=﹣=.【点睛】此题主要考查四边形综合,解题的关键是熟知等边三角形的性质、旋转的特点及相似三角形的判定与性质、勾股定理的应用.23、(1)P(抽到数字2)=;(2)游戏不公平,图表见解析.【详解】试题分析:(1)根据概率公式即可求解;(2)利用列表法,求得小贝胜与小晶胜的概率,比较即可游戏是否公平.试题解析:(1)P(抽到数字2)=;(2)公平.列表:
2
2
3
6
2
(2,2)
(2,2)
(2,3)
(2,6)
2
(2,2)
(2,2)
(2,3)
(2,6)
3
(3,2)
(3,2)
(3,3)
(3,6)
6
(6,2)
(6,2)
(6,3)
(6,6)
由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过32的结果有10种.所以P(小贝胜)=,P(小晶胜)=.所以游戏不公平.考点:游戏公平性.24、(1)见解析;(2)MF=.【分析】(1)如图,连接OE,OF,由垂径定理可知,根据圆周角定理可求出∠DOF=60°,根据三角形内角和定理可得∠OFD=90°,即可得FD为⊙O的切线;(2)如图,连接OM,由中位线的性质可得OM//AE,根据平行线的性质可得∠MOB=∠A=30°,根据垂径定理可得OM⊥BE,根据含30°角的直角三角形的性质可求出BE的长,利用勾股定理可求出OM的长,根据三角形内角和可得∠DOF=60°,即可求出∠MOF=90°,利用勾股定理求出MF的长即可.【详解】(1)如图,连接OE,OF,∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°,∴OF⊥F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024大数据中心建设监理合同
- 2024年更新版:预算合同风险管理策略3篇
- 2024采购合同书范本
- 2024年房产买卖新合同2篇
- 2024年度能源管理系统建设与运营合同2篇
- 2024年城市供水供排水设施建设与运营合同
- 2024年定制卫浴采购合同范例范例
- 基于2024年度的农产品批发市场建设与运营合同3篇
- 2024年旺铺门面房租赁转出协议模板版B版
- 2024年度委托代购协议:某科技公司与供应商之间的委托代购合同3篇
- 【ITH康养家】2023毫米波跌倒监测产品测评白皮书
- 孩子在校被撞骨折调解协议书范文
- 2024年法制宣传日普法知识竞赛题库及答案(共三套)
- 2025届江苏省丹阳市丹阳高级中学高一数学第一学期期末统考试题含解析
- 2025届上海二中高二数学第一学期期末检测模拟试题含解析
- 2024秋期国家开放大学专本科《经济法学》一平台在线形考(计分作业一至四)试题及答案
- 2024年安徽省文化和旅游行业职业技能大赛(导游赛项)考试题库(含答案)
- 《工会工作制度》会议纪要
- DB34T 579-2021 住宅区智能化系统工程设计、验收标准
- 电商平台商品销售数据分析报告
- 2024新版英语英语3500个单词分类大全
评论
0/150
提交评论