版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9专题11导数之极值点偏移(二)一、考情分析函数的极值点偏移问题,是导数应用问题,呈现的形式往往非常简洁,涉及函数的双零点,是一个多元数学问题,不管待证的是两个变量的不等式,还是导函数的值的不等式,解题的策略都是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.二、考点梳理1、极值点偏移的判定定理对于可导函数,在区间上只有一个极大(小)值点,方程的解分别为,且,(1)若,则,即函数在区间上极(小)大值点右(左)偏;(2)若,则,即函数在区间上极(小)大值点右(左)偏.2、运用判定定理判定极值点偏移的方法1、极值点偏移处理方法:(1)求出函数的极值点;(2)构造一元差函数;(3)确定函数的单调性;(4)结合,判断的符号,从而确定、的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、答题模板若已知函数满足,为函数的极值点,求证:.(1)讨论函数的单调性并求出的极值点;假设此处在上单调递减,在上单调递增.[来源:Z,xx,k.Com](2)构造;注:此处根据题意需要还可以构造成的形式.[来源:Zxxk.Com](3)通过求导讨论的单调性,判断出在某段区间上的正负,并得出与的大小关系;假设此处在上单调递增,那么我们便可得出,从而得到:时,.(4)不妨设,通过的单调性,,与的大小关系得出结论;接上述情况,由于时,且,,故,又因为,且在上单调递减,从而得到,从而得证.(5)若要证明,还需进一步讨论与的大小,得出所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为,故,由于在上单调递减,故.【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求的单调性、极值点,证明与(或与)的大小关系;若试题难度较大,则直接给出形如或的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.[来源:Z。xx。k.Com]
三、题型分析例1、已知函数在其定义域内有两个不同的极值点.(1)求的取值范围.(2)设的两个极值点为,证明.例2、(2021·重庆市开州中学高三月考)设函数.(1)讨论函数的单调性;(2)当时,若在定义域内存在两实数,满足且,证明:.
例3、已知,.若有两个极值点,,且,求证:(为自然对数的底数).例4、已知函数与的图象在点处有相同的切线.(Ⅰ)若函数与的图象有两个交点,求实数的取值范围;(Ⅱ)若函数有两个极值点,,且,证明:.
例5、(2021·湖北恩施·高三开学考试)已知函数.(1)判断的单调性;(2)设方程的两个根为,,求证:.
迁移应用1、(2021·湖北江岸·高二期末)已知函数,其中为自然对数的底数.(1)讨论函数的单调性;(2)若,且,证明:.2、已知函数.(1)求的单调区间;(2)证明:当时,.
3、(2021·江苏·周市高级中学高三开学考试)已知函数,.(1)求函数的单调区间;(2)若,且,证明:.4、(2021·安徽·合肥一中高三月考(理))已知函数.(1)若恒成立,求实数的取值范围.(2)若函数的两个零点为,,证明:.
5、(2021·四川·成都外国语学校高三月考(文))已知函数.(1)证明:曲线在点处的切线恒过定点;(2)若有两个零点,,且,证明:.6、(2021·陕西·千阳县中学模拟预测(理))已知.(1)求的单调区间;(2)当时,若关于x的方程存在两个正实数根,证明:且.
7、(2021·北京·临川学校高三期末)已知函数.(1)若函数在定义域内单调递增,求实数的取值范围;(2)若函数存在两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度能源项目合同财产保全担保书范本3篇
- 2025年度个人装修贷款协议书3篇
- 二零二五年度60岁以上人员社区教育辅导劳动合同模板3篇
- 2024-2025学年新教材高中政治第3单元就业与创业单元综合提升教案新人教版选择性必修2
- 2025版智能交通管理系统建设运营履约担保合同4篇
- 2025年度喷灌系统节能改造技术合同4篇
- 2025年度在线教育平台兼职外教远程教学合同4篇
- 2025年度宿舍管理员职业发展规划聘用合同
- 二零二五年度驾校教练员职业发展承包合同3篇
- 2025年度马赛克材料研发与应用采购合同4篇
- C及C++程序设计课件
- 带状疱疹护理查房
- 公路路基路面现场测试随机选点记录
- 平衡计分卡-化战略为行动
- 国家自然科学基金(NSFC)申请书样本
- 幼儿教师干预幼儿同伴冲突的行为研究 论文
- 湖南省省级温室气体排放清单土地利用变化和林业部分
- 材料设备验收管理流程图
- 培训机构消防安全承诺书范文(通用5篇)
- (完整版)建筑业10项新技术(2017年最新版)
- 第8期监理月报(江苏版)
评论
0/150
提交评论