版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,⊙的半径垂直于弦,是优弧上的一点(不与点重合),若,则等于()A. B. C. D.2.如图,点,,均在⊙上,当时,的度数是()A. B. C. D.3.赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于()A.2m B.4m C.10m D.16m4.已知一组数据:-1,0,1,2,3是它的一个样本,则这组数据的平均值大约是()A.5 B.1 C.-1 D.05.若,则下列比例式中正确的是()A. B. C. D.6.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测.根据胡老师给出的方向坐标,猜测比较合理的是()A.小明:“早上8点” B.小亮:“中午12点”C.小刚:“下午5点” D.小红:“什么时间都行”7.已知是一元二次方程的一个解,则m的值是A.1 B. C.2 D.8.下列方程中是一元二次方程的是()A. B. C. D.9.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.10.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A.2 B.1 C.0 D.-111.把抛物线向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A. B.C. D.12.将6497.1亿用科学记数法表示为()A.6.4971×1012 B.64.971×1010 C.6.5×1011 D.6.4971×1011二、填空题(每题4分,共24分)13.关于的一元二次方程的二根为,且,则_____________.14.二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)15.若锐角满足,则__________.16.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.17.______.18.已知方程x2﹣3x﹣5=0的两根为x1,x2,则x12+x22=_________.三、解答题(共78分)19.(8分)[问题发现]如图①,在中,点是的中点,点在边上,与相交于点,若,则_____;[拓展提高]如图②,在等边三角形中,点是的中点,点在边上,直线与相交于点,若,求的值.[解决问题]如图③,在中,,点是的中点,点在直线上,直线与直线相交于点,.请直接写出的长.20.(8分)如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.21.(8分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.22.(10分)如图,抛物线交轴于两点,交轴于点,点的坐标为,直线经过点.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接当直线与直线的一个夹角等于的2倍时,请直接写出点的坐标.23.(10分)如图,方格纸中的每个小方格都是边长为个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为.以点为位似中心,在轴的左侧将放大得到,使得的面积是面积的倍,在网格中画出图形,并直接写出点所对应的点的坐标.在网格中,画出绕原点顺时针旋转的.24.(10分)如图,在的正方形网格中,网线的交点称为格点,点,,都是格点.已知每个小正方形的边长为1.(1)画出的外接圆,并直接写出的半径是多少.(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上.25.(12分)如图,在中,,,垂足分别为,与相交于点.(1)求证:;(2)当时,求的长.26.若关于的一元二次方程方有两个不相等的实数根.⑴求的取值范围.⑵若为小于的整数,且该方程的根都是有理数,求的值.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据题意,⊙的半径垂直于弦,可应用垂径定理解题,平分弦,平分弦所对的弧、平分弦所对的圆心角,故,又根据同一个圆中,同弧所对的圆周角等于其圆心角的一半,可解得【详解】⊙的半径垂直于弦,故选A【点睛】本题考查垂径定理、圆周角与圆心角的关系,熟练掌握相关知识并灵活应用是解题关键.2、A【分析】先利用等腰三角形的性质和三角形内角和计算出的度数,然后根据圆周角定理可得到的度数.【详解】,,,.故选A.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、B【分析】根据题意,水面宽度AB为20则B点的横坐标为10,利用B点是函数为图象上的点即可求解y的值即DO【详解】根据题意B的横坐标为10,把x=10代入,得y=﹣4,∴A(﹣10,﹣4),B(10,﹣4),即水面与桥拱顶的高度DO等于4m.故选B.【点睛】本题考查了点的坐标及二次函数的实际应用.4、B【分析】根据平均数的定义计算即可.【详解】这组数据的平均数为(﹣1+0+1+2+3)÷5=1.故选:B.【点睛】本题考查了平均数.掌握平均数的求法是解答本题的关键.5、C【分析】根据比例的基本性质直接判断即可.【详解】由,根据比例性质,两边同时除以6,可得到,故选C.【点睛】本题考查比例的基本性质,掌握性质是解题关键.6、C【解析】可根据平行投影的特点分析求解,或根据常识直接确定答案.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.故选C.本题考查了平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.7、A【解析】把x=1代入方程x2+mx﹣2=0得到关于m的一元一次方程,解之即可.【详解】把x=1代入方程x2+mx﹣2=0得:1+m﹣2=0,解得:m=1.故选A.【点睛】本题考查了一元二次方程的解,正确掌握一元二次方程的解的概念是解题的关键.8、C【分析】根据一元二次方程的定义依次判断后即可解答.【详解】选项A,是一元一次方程,不是一元二次方程;选项B,是二元二次方程,不是一元二次方程;选项C,是一元二次方程;选项D,是分式方程,不是一元二次方程.故选C.【点睛】本题考查了一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程是解决问题的关键.9、D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可.【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故答案选D.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键.10、D【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【详解】2x>m−3,解得x>,∵在数轴上的不等式的解集为:x>−2,∴=−2,解得m=−1;故选:D.【点睛】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.11、A【解析】试题解析:抛物线的顶点坐标为(0,0),把点(0,0)先向右平移1个单位,再向上平移1个单位后得到的点的坐标为(1,1),所以所得的抛物线的解析式为y=(x-1)2+1.故选B.考点:二次函数图象与几何变换12、D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6497.1亿=649710000000=6.4971×1.故选:D.【点睛】此题主要考查科学记数法,解题的关键是熟知科学记数法的表示方法.二、填空题(每题4分,共24分)13、【分析】先降次,再利用韦达定理计算即可得出答案.【详解】∵的一元二次方程的二根为∴∴又,代入得解得:m=故答案为.【点睛】本题考查的是一元二次方程根与系数的关系,若的一元二次方程的二根为,则,.14、①③.【解析】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(,y2)是对称点,∴则y1<y2;故②不正确;③∵=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0,3a+c=0,a=﹣c;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AB=AC=4时,∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AC=BC时,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无实数解.经解方程组可知有两个b值满足条件.故⑤错误.综上所述,正确的结论是①③.故答案为①③.点睛:本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数的图象与系数的关系:当a<0,抛物线开口向下;抛物线的对称轴为直线x=;抛物线与y轴的交点坐标为(0,c),与x轴的交点为(x1,0)、(x2,0).15、【分析】根据特殊角三角函数值,可得答案.【详解】解:由∠A为锐角,且,∠A=60°,
故答案为:60°.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.16、(1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用17、【分析】将特殊角的三角函数值代入求解.【详解】解:,故答案为:.【点睛】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键.18、1.【解析】试题解析:∵方程的两根为故答案为1.点睛:一元二次方程的两个根分别为三、解答题(共78分)19、[问题发现];[拓展提高];[解决问题]或.【分析】[问题发现]由,可知AD是中线,则点P是△ABC的重心,即可得到2∶3;[拓展提高]过点作交于点,则EF是△ACD的中位线,由平行线分线段成比例,得到,通过变形,即可得到答案;[解决问题]根据题意,可分为两种情况进行讨论,①点D在点C的右边;②点D在点C的左边;分别画出图形,求出BP的长度,即可得到答案.【详解】解:[问题发现]:∵,∴点D是BC的中点,∴AD是△ABC的中线,∵点是的中点,则BE是△ABC的中线,∴点P是△ABC的重心,∴;故答案为:.[拓展提高]:过点作交于点.是的中点,是的中点,∴EF是△ACD的中位线,,,,∴,,即..[解决问题]:∵在中,,,∵点E是AC的中点,∴,∵CD=4,则点D可能在点C的右边和左边两种可能;①当点D在点C的右边时,如图:过点P作PF⊥CD与点F,∵,,∴△ACD∽△PFD,∴,即,∴,∵,,∴△ECB∽△PBF,∴,∵,∴,解得:,∴,,∴;②当点D在点C的左边时,如图:过点P作PF⊥CD与点F,与①同理,可证△ACD∽△PFD,△ECB∽△PBF,∴,,∵,∴,解得:,∴,,∴;∴或.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例,勾股定理,以及三角形的重心,解题的关键是熟练掌握相似三角形的判定和性质,以及勾股定理解三角形.注意运用分类讨论的思想进行解题.20、(1)y=x2﹣x﹣3;(2)P(3,﹣);(3)点P(2,﹣3),最大值为12【分析】(1)用交点式设出抛物线的表达式,化为一般形式,根据系数之间的对应关系即可求解;(2)根据(1)中的表达式求出点C(0,-3),函数对称轴为:x=1,则点D(2,-3),点E(4,-3),当△PDE是以DE为底边的等腰三角形时,点P在线段DE的中垂线上,据此即可求解;
(3)求出直线BC的表达式,设出P、H点的坐标,根据四边形ACPB的面积=S△ABC+S△BHP+S△CHP进行计算,化为顶点式即可求解.【详解】(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣2a=﹣,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)当x=0时,y=-3,故点C的坐标为(0,﹣3),函数对称轴为:x==1,∵CE∥AB∴点D(2,﹣3),点E(4,﹣3),则DE的中垂线为:x==3,当x=3时,y=x2﹣x﹣3=﹣,故点P(3,﹣);(3)设直线BC的解析式为y=kx+b,把B(4,0)C(0,﹣3)代入得:解得:∴直线BC的表达式为:y=x﹣3,故点P作y轴的平行线交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3);四边形ACPB的面积=S△ABC+S△BHP+S△CHP=3×6+HP×OB=9+×4×(x﹣3﹣x2+x+3)=﹣x2+3x+9=,∵﹣<0,故四边形ACPB的面积有最大值为12,此时,点P(2,﹣3).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、面积的计算等,综合性强,掌握中点坐标公式及作辅助线的方法是关键.21、(1)证明见解析;(2)3或.(3)或0<【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,②与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.【详解】(1)证明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,则有PE∥AB∴四边形ABEP为矩形,∴PA=EB=3,即x=3.情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,即∴满足条件的x的值为3或(3)或【点睛】两组角对应相等,两三角形相似.22、(1);(2)当时,有最大值,最大值为,点坐标为;(3)点的坐标或.【分析】(1)利用点B的坐标,用待定系数法即可求出抛物线的函数表达式;(2)如图1,过点P作轴,交BC于点H,设,H,求出的面积即可求解;(3)如图2,作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于,交AC于E,利用等腰三角形的性质和三角形外角性质得到,再确定N(3,−2),AC的解析式为y=5x−5,E点坐标为,利用两直线垂直的问题可设直线的解析式为,把E代入求出b,得到直线的解析式为,则解方程组得点的坐标;作点关于N点的对称点,利用对称性得到,设,根据中点坐标公式得到,然后求出x即可得到的坐标,从而得到满足条件的点M的坐标.【详解】(1)把代入得;(2)过点P作轴,交BC于点H,设,则点H的坐标为,∴,∴,∴当时,有最大值,最大值为,此时点坐标为.(3)作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于,交AC于E,∵,
∴,
∴,
∵△ANB为等腰直角三角形,
∴,
∴N(3,−2),
由可得AC的解析式为y=5x−5,E点坐标为,
设直线的解析式为,把E代入得,解得,
∴直线的解析式为,
解方程组得,则;
如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度施工现场安全监测服务合同
- 2024版买卖摩托车合同协议书
- 2025版贷款购房房屋装修工程智能家居系统维护合同3篇
- 2024年度专业房地产代理买卖合作协议2篇
- 2024教室装修合同样本
- 2025年度酒店客房租赁与酒店设施设备租赁及维护合同2篇
- 2025版环保产业技术转移转化合作协议3篇
- 二零二五年度临时工就业援助协议3篇
- 2024年金融机构不良资产清收委托协议3篇
- 2024年适用型洁具采购协议样本版B版
- 色粉-MSDS物质安全技术资料
- 骨科学研究生复试真题汇总版
- 石油化工钢结构工程施工及验收规范
- 辽海版六年级音乐上册第8单元《3. 演唱 姐妹们上场院》教学设计
- 形势任务教育宣讲材料第一讲——讲上情
- 物业安全员考核实施细则
- 中国地质大学(武汉)教育发展基金会筹备成立情况报告
- 第四章破产法(破产法)教学课件
- PE拖拉管施工方案标准版
- 7725i进样阀说明书
- 铁路建设项目施工企业信用评价办法(铁总建设〔2018〕124号)
评论
0/150
提交评论