版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.82.已知当x>0时,反比例函数y=的函数值随自变量的增大而减小,此时关于x的方程x2﹣2(k+1)x+k2﹣1=0的根的情况为()A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.无法确定3.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4 B.﹣4 C.3﹣4 D.6﹣34.已知函数是反比例函数,则此反比例函数的图象在()A.第一、三象限 B.第二、四象限C.第一、四象限 D.第二、三象限5.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨6.下列图形中,绕某个点旋转72度后能与自身重合的是()A. B.C. D.7.如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,,则小河的宽等于()A. B. C. D.8.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限9.如图,经过原点的⊙与轴分别交于两点,点是劣弧上一点,则()A.是锐角 B.是直角 C.是钝角 D.大小无法确定10.表中所列的7对值是二次函数图象上的点所对应的坐标,其中x……y…7m14k14m7…根据表中提供的信息,有以下4个判断:①;②;③当时,y的值是k;④其中判断正确的是()A.①②③ B.①②④ C.①③④ D.②③④11.如图所示,在矩形ABCD中,点F是BC的中点,DF的延长线与AB的延长线相交于点E,DE与AC相交于点O,若,则()A.4 B.6 C.8 D.1012.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,) D.(2n+1,)二、填空题(每题4分,共24分)13.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:①abc>0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正确结论的序号为_____.14.若等腰三角形的两边长恰为方程的两实数根,则的周长为________________.15.如图,把直角尺的角的顶点落在上,两边分别交于三点,若的半径为.则劣弧的长为______.16.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.17.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是________.18.写出一个对称轴是直线,且经过原点的抛物线的表达式______.三、解答题(共78分)19.(8分)如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦CD的距离;(2)当DF•DB=CD2时,求∠CBD的大小;(3)若AB=2AE,且CD=12,求△BCD的面积.20.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于50%.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)455055销售量y(千克)11010090(1)求y与x之间的函数表达式,并写出自变量的范围;(2)设每天销售该商品的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?21.(8分)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG.(1)求证:△DCG≌△BEG;(2)你能求出∠BDG的度数吗?若能,请写出计算过程;若不能,请说明理由.22.(10分)用适当的方法解下列一元二次方程:(1)(2)23.(10分)化简并求值:,其中m满足m2-m-2=0.24.(10分)如图,已知一次函数y=x﹣2与反比例函数y=的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积.25.(12分)(特例感知)(1)如图①,∠ABC是⊙O的圆周角,BC为直径,BD平分∠ABC交⊙O于点D,CD=3,BD=4,则点D到直线AB的距离为.(类比迁移)(2)如图②,∠ABC是⊙O的圆周角,BC为⊙O的弦,BD平分∠ABC交⊙O于点D,过点D作DE⊥BC,垂足为E,探索线段AB、BE、BC之间的数量关系,并说明理由.(问题解决)(3)如图③,四边形ABCD为⊙O的内接四边形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,则△ABC的内心与外心之间的距离为.26.问题提出:如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.a.每次只能移动1个金属片;b.较大的金属片不能放在较小的金属片上面.把个金属片从1号针移到3号针,最少移动多少次?问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.探究一:当时,只需把金属片从1号针移到3号针,用符号表示,共移动了1次.探究二:当时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:a.把第1个金属片从1号针移到2号针;b.把第2个金属片从1号针移到3号针;c.把第1个金属片从2号针移到3号针.用符号表示为:,,.共移动了3次.探究三:当时,把上面两个金属片作为一个整体,则归结为的情形,移动的顺序是:a.把上面两个金属片从1号针移到2号针;b.把第3个金属片从1号针移到3号针;c.把上面两个金属片从2号针移到3号针.其中(1)和(3)都需要借助中间针,用符号表示为:,,,,,,.共移动了7次.(1)探究四:请仿照前面步骤进行解答:当时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.(2)探究五:根据上面的规律你可以发现当时,需要移动________次.(3)探究六:把个金属片从1号针移到3号针,最少移动________次.(4)探究七:如果我们把个金属片从1号针移到3号针,最少移动的次数记为,当时如果我们把个金属片从1号针移到3号针,最少移动的次数记为,那么与的关系是__________.
参考答案一、选择题(每题4分,共48分)1、B【解析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.2、C【分析】由反比例函数的增减性得到k>0,表示出方程根的判别式,判断根的判别式的正负即可得到方程解的情况.【详解】∵反比例函数y,当x>0时,y随x的增大而减小,∴k>0,∴方程中,△==8k+8>0,∴方程有两个不相等的实数根.故选C.【点睛】本题考查了根的判别式,以及反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键.3、A【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【详解】如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选:A.【点睛】考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,解题关键是直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值.4、A【分析】首先根据反比例函数的定义,即可得出,进而得出反比例函数解析式,然后根据其性质,即可判定其所在的象限.【详解】根据已知条件,得即∴函数解析式为∴此反比例函数的图象在第一、三象限故答案为A.【点睛】此题主要考查反比例函数的性质,熟练掌握,即可解题.5、B【解析】必然事件就是一定发生的事件,结合不可能事件、随机事件的定义依据必然事件的定义逐项进行判断即可.【详解】A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误,故选B.【点睛】本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【解析】根据旋转的定义即可得出答案.【详解】解:A.旋转90°后能与自身重合,不合题意;B.旋转72°后能与自身重合,符合题意;C.旋转60°后能与自身重合,不合题意;D.旋转45°后能与自身重合,不合题意;故选B.【点睛】本题考查的是旋转:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.7、C【分析】利用∠ABC的正切函数求解即可.【详解】解:∵AC⊥CD,,,∴小河宽AC=BC·tan∠ABC=100tan50°(m).故选C.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.8、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,
∴反比例函数y=的图象分布在一、三象限.
故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.9、B【分析】根据圆周角定理的推论即可得出答案.【详解】∵和对应着同一段弧,∴,∴是直角.故选:B.【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.10、B【分析】根据表格得到二次函数的性质,分别求出开口方向,对称轴、最值即可解题.【详解】解:由表格中的数据可知,当时,y的值先变大后减小,说明二次函数开口向下,所以①正确;同时可以确定对称轴在与之间,所以在对称轴左侧可得②正确;因为不知道横坐标之间的取值规律,所以无法说明对称轴是直线x=,所以此时顶点的函数值不一定等于k,所以③当时,y的值是k错误;由题可知函数有最大值,此时,化简整理得:④正确,综上正确的有①②④,故选B.【点睛】本题考查了二次函数的性质,中等难度,将表格信息转换成有效信息是解题关键.11、C【解析】由矩形的性质得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA证明△BEF≌△CDF,得出BE=CD=AB,则AE=2AB=2CD,再根据AOECOD,面积比等于相似比的平方即可。【详解】∵四边形ABCD是矩形,
∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,
∴∠EBF=90°,
∵F为BC的中点,
∴BF=CF,
在△BEF和△CDF中,,
∴△BEF≌△CDF(ASA),
∴BE=CD=AB,
∴AE=2AB=2CD,
∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故选:C.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握有关的性质与判定是解决问题的关键.12、C【解析】试题分析:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,An的纵坐标是,当n为偶数时,An的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选C.考点:坐标与图形变化-旋转.二、填空题(每题4分,共24分)13、②③.【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】由图象可知,抛物线开口向下,a<0,对称轴在y轴右侧,a、b异号,b>0,与y轴交于正半轴,c>0,所以abc<0,因此①是错误的;当y=0时,抛物线与x轴交点的横坐标就是ax2+bx+c=0的两根,由图象可得x1=﹣1,x2=3;因此②正确;对称轴为x=1,即﹣=1,也就是2a+b=0;因此③正确,∵a<0,a2>0,b>0,c>0,∴4a2+2b+c>0,因此④是错误的,故答案为:②③.【点睛】此题考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.14、1【分析】先求出一元二次方程的解,再进行分类讨论求周长即可.【详解】,解得:,,当等腰三角形的三边分别为3,3,6时,3+3=6,不满足三边关系,故该等腰三角形不存在;当等腰三角形的三边分别为6,6,3时,满足三边关系,该等腰三角形的周长为:6+6+3=1.故答案为:1.【点睛】本题考查一元二次方程的解法与等腰三角形的结合,做题时需注意等腰三角形中边的分类讨论及判断是否满足三边关系.15、【分析】连接OB、OC,如图,先根据圆周角定理求出∠BOC的度数,再根据弧长公式计算即可.【详解】解:连接OB、OC,如图,∵∠A=45°,∴∠BOC=90°,∴劣弧的长=.故答案为:.【点睛】本题考查了圆周角定理和弧长公式的计算,属于基础题型,熟练掌握基本知识是解题关键.16、0.4m【分析】先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.【详解】∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO.∵∠AOB=∠COD,∴△OAB∽△OCD,∴AO:CO=AB:CD,∴4:1=1.6:CD,∴CD=0.4.故答案为0.4.【点睛】本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.17、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可.【详解】解:
红1红2红3白1白2红1--红1红2红1红3红1白1红1白2红2红2红1--红2红3红2白1红2白2红3红3红1红3红2--红3白1红3白2白1白1红1白1红2白1红3--白1白2白2白2红1白2红2白2红3白2白1--∵从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,∴摸到两个红球的概率是.
故答案为:.【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.18、答案不唯一(如)【分析】抛物线的对称轴即为顶点横坐标的值,根据顶点式写出对称轴是直线的抛物线表达式,再化为一般式,再由经过原点即为常数项c为0,即可得到答案.【详解】解:∵对称轴是直线的抛物线可为:又∵抛物线经过原点,即C=0,∴对称轴是直线,且经过原点的抛物线的表达式可以为:,故本题答案为:(答案不唯一).【点睛】本题考查了抛物线的对称轴与抛物线解析式的关系.关键是明确对称轴的值与顶点横坐标相同.三、解答题(共78分)19、(1);(2)45°;(3)1.【解析】(1)过O作OH⊥CD于H,根据垂径定理求出点O到H的距离即可;(2)根据相似三角形的判定与性质,先证明△CDF∽△BDC,再根据相似三角形的性质可求解;(3)连接BE,BO,DO,并延长BO至H点,利用相似三角形的性质判定,求得BH的长,然后根据三角形的面积求解即可.【详解】解:(1)如图,过O作OH⊥CD于H,∵点D为弧EC的中点,∴弧ED=弧CD,∴∠OCH=45°,∴OH=CH,∵圆O的半径为2,即OC=2,∴OH=;(2)∵当DF•DB=CD2时,,又∵∠CDF=∠BDC,∴△CDF∽△BDC,∴∠DCF=∠DBC,∵∠DCF=45°,∴∠DBC=45°;(3)如图,连接BE,BO,DO,并延长BO至H点,∵BD=BC,OD=OC,∴BH垂直平分CD,又∵AB∥CD,∴∠ABO=90°=∠EBC,∴∠ABE=∠OBC=∠OCB,又∵∠A=∠A,∴△ABE∽△ACB,∴,即AB2=AE×AC,∴,设AE=x,则AB=2x,∴AC=4x,EC=3x,∴OE=OB=OC=,∵CD=12,∴CH=6,∵AB∥CH,∴△AOB∽△COH,∴,即,解得x=5,OH=4.5,OB=7.5,∴BH=BO+OH=12,∴△BCD的面积=×12×12=1.20、(1)y=-2x+200(40≤x≤60);(2)售价为60元时每天销售该商品所获得最大利润,最大利润是1600.【解析】(1)利用待定系数法求解可得;
(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况;【详解】(1)设y=kx+b,将(50,100)、(55,90)代入,得:50k+b=10055k+b=90∴y=-2x+200(40≤x≤60);(2)W=(x-40)(-2x+200)=-2=-2∵-2<0开口向下∴当x<70时,W随x的增大而增大,当x=60时,W最大=1600,答:售价为60元时每天销售该商品所获得最大利润,最大利润是1600.【点睛】考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.21、(1)见解析;(2)∠BDG=45°,计算过程见解析【分析】(1)先求出∠BAE=45°,判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AB=BE,∠AEB=45°,从而得到BE=CD,再求出△CEF是等腰直角三角形,根据等腰直角三角形的性质可得CG=EG,再求出∠BEG=∠DCG=135°,然后利用“边角边”证明即可.(2)由△DCG≌△AEG,得出∠DGC=∠BGE,证出∠BGD=∠EGC=90°,即可得出结果.【详解】(1)证明:∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴AB=BE,∠AEB=45°,∵AB=CD,∴BE=CD,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF是等腰直角三角形,∵点G为EF的中点,∴CG=EG,∠FCG=45°,∴∠BEG=∠DCG=135°,在△DCG和△BEG中,,∴△DCG≌△BEG(SAS).(2)解:∵△DCG≌△BEG,∴∠DGC=∠BGE,DG=BG,∴∠BGD=∠EGC=90°,∴△BDG等腰直角三角形,∴∠BDG=45°.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.22、(1);(2).【分析】(1)根据因式分解法求解方程即可.(2)根据公式,将系数代入即可.【详解】(1)原方程变形,即.∴或.∴.(2)∵,∴∴∴.【点睛】本题考查了一元二次方程的解法.23、,原式=【分析】根据分式的运算进行化简,再求出一元二次方程m2-m-2=0的解,并代入使分式有意义的值求解.【详解】==,由m2-m-2=0解得,m1=2,m2=-1,因为m=-1分式无意义,所以m=2时,代入原式==.【点睛】此题主要考查分式的运算及一元二次方程的求解,解题的关键熟知分式额分母不为零.24、(1)A的坐标是(3,1),B的坐标是(﹣1,﹣3);(2)1【分析】(1)求出两函数解析式组成的方程组的解即可;(2)先求出函数y=x﹣2与y轴的交点的坐标,再根据三角形的面积公式求出面积即可.【详解】解:(1)解方程组,解得:,,即A的坐标是(3,1),B的坐标是(﹣1,﹣3);(2)设函数y=x﹣2与y轴的交点是C,当x=0时,y=﹣2,即OC=2,∵A的坐标是(3,1),B的坐标是(﹣1,﹣3),∴△AOB的面积S=S△AOC+S△BOC==1.【点睛】本题考查了反比例函数与一次函数的交点问题,解方程组等知识点,能求出A、B、C的坐标是解此题的关键.25、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直径可得∠BDC=90°,根据勾股定理可得BC=5过点D分别作DE⊥BC于点E,DF⊥BA于点F由BD平分∠ABC可得DE=DF=,DF即为所求,(2)过点D分别作DE⊥BC于点E,DF⊥BA于点F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE进而可证△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易证BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如图易得四边形BEDF为正方形,BD是对角线,可得正方形边长为7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC内切圆,M为圆心,N为切点,由切线长定理可得,所以ON=5-4=1由面积法易得内切圆半径为2【详解】解:(1)由AB是直径可得∠BDC=90°,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国婴儿床市场前景规模及发展趋势分析报告
- 2024年港口起重机采购与租赁合同3篇
- 2024年塔吊租赁合同及操作培训服务3篇
- 茂名职业技术学院《刑法2》2023-2024学年第一学期期末试卷
- 2024年度物业服务合同履行监督与违约责任追究研究3篇
- 2024年标准离婚合同样本图片直接下载版B版
- 2024年版测绘服务委托书2篇
- 2024年歌手经纪公司合约3篇
- 2025年兰州货运从业资格证考试试题和答案
- 2025公对公借款合同范本
- 《物流系统规划与设计》课程教学大纲
- 护理质控分析整改措施(共5篇)
- 金属矿山安全教育课件
- 托盘演示教学课件
- 中华农耕文化及现实意义
- DB32T 4353-2022 房屋建筑和市政基础设施工程档案资料管理规程
- DBJ61-T 112-2021 高延性混凝土应用技术规程-(高清版)
- 2023年高考数学求定义域专题练习(附答案)
- 农产品品牌与营销课件
- 苏科版一年级心理健康教育第17节《生命更美好》教案(定稿)
- 车辆二级维护检测单参考模板范本
评论
0/150
提交评论