![2023届广东省清远市数学九年级上册期末统考模拟试题含解析_第1页](http://file4.renrendoc.com/view/d08b3bc27fd46ed8916dffa544afe8a1/d08b3bc27fd46ed8916dffa544afe8a11.gif)
![2023届广东省清远市数学九年级上册期末统考模拟试题含解析_第2页](http://file4.renrendoc.com/view/d08b3bc27fd46ed8916dffa544afe8a1/d08b3bc27fd46ed8916dffa544afe8a12.gif)
![2023届广东省清远市数学九年级上册期末统考模拟试题含解析_第3页](http://file4.renrendoc.com/view/d08b3bc27fd46ed8916dffa544afe8a1/d08b3bc27fd46ed8916dffa544afe8a13.gif)
![2023届广东省清远市数学九年级上册期末统考模拟试题含解析_第4页](http://file4.renrendoc.com/view/d08b3bc27fd46ed8916dffa544afe8a1/d08b3bc27fd46ed8916dffa544afe8a14.gif)
![2023届广东省清远市数学九年级上册期末统考模拟试题含解析_第5页](http://file4.renrendoc.com/view/d08b3bc27fd46ed8916dffa544afe8a1/d08b3bc27fd46ed8916dffa544afe8a15.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,二次函数的图象可能是()A. B. C. D.2.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.73.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150° B.140° C.130° D.120°4.如图所示,AB∥CD,∠A=50°,∠C=27°,则∠AEC的大小应为()A.23° B.70° C.77° D.80°5.下列几何体中,同一个几何体的主视图与左视图不同的是()A. B. C. D.6.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是()A. B. C. D.7.如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连AC、BC,若∠P=80°,则的∠ACB度数为()A.40° B.50° C.60° D.80°8.把抛物线向右平移个单位,再向下平移个单位,即得到抛物线()A.y=-(x+2)2+3 B.y=-(x-2)2+3 C.y=-(x+2)2-3 D.y=-(x-2)2-39.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().A.20海里 B.10海里 C.20海里 D.30海里10.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.2411.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB12.在中,,,若,则的长为()A. B. C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系中,已知、两点,以坐标原点为位似中心,相似比为,把线段缩小后得到线段,则的长度等于________.14.如图,在平面直角坐标系中,点A是x轴正半轴上一点,菱形OABC的边长为5,且tan∠COA=,若函数的图象经过顶点B,则k的值为________.15.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论中一定成立的是_____(把所有正确结论的序号都填在横线上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=﹣1.16.我区某校举行冬季运动会,其中一个项目是乒乓球比赛,比赛为单循环制,即所有参赛选手彼此恰好比赛一场.记分规则是:每场比赛胜者得3分、负者得0分、平局各得1分.赛后统计,所有参赛者的得分总知为210分,且平局数不超过比赛总场数的,本次友谊赛共有参赛选手__________人.17.如图,已知中,,,,将绕点顺时针旋转得到,点、分别为、的中点,若点刚好落在边上,则______.18.点(2,5)在反比例函数的图象上,那么k=_____.三、解答题(共78分)19.(8分)小王同学在地质广场上放风筝,如图风筝从处起飞,几分钟后便飞达处,此时,在延长线上处的小张同学发现自己的位置与风筝和广场边旗杆的顶点在同一直线上,已知旗杆高为10米,若在处测得旗杆顶点的仰角为30〫,处测得点的仰角为45〫,若在处背向旗杆又测得风筝的仰角为75〫,绳子在空中视为一条线段,求绳子为多少米?(结果保留根号)20.(8分)小明按照列表、描点、连线的过程画二次函数的图象,下表与下图是他所完成的部分表格与图象,求该二次函数的解析式,并补全表格与图象.21.(8分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.22.(10分)如图,折叠边长为的正方形,使点落在边上的点处(不与点,重合),点落在点处,折痕分别与边、交于点、,与边交于点.证明:(1);(2)若为中点,则;(3)的周长为.23.(10分)已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.(1)求证:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的长.24.(10分)己知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?25.(12分)已知关于x的一元二次方程x1=1(1-m)x-m1有两个实数根为x1,x1.(1)求m的取值范围;(1)设y=x1+x1,求当m为何值时,y有最小值.26.如图,在△ABC中,D为AB边上一点,∠B=∠ACD.(1)求证:△ABC∽△ACD;(2)如果AC=6,AD=4,求DB的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据二次函数图像的特点可得.【详解】解:二次函数与轴有两个不同的交点,开口方向向上.故选:A.【点睛】本题考查了二次函数的图象,解决本题的关键是二次函数的开口方向和与x轴的交点.2、B【分析】直接利用相似三角形的性质得出,故,进而得出AM的长即可得出答案.【详解】解:由题意可得:OC∥AB,则△MBA∽△MCO,∴,即解得:AM=1.故选:B.【点睛】此题主要考查了相似三角形的应用,根据题意得出△MBA∽△MCO是解题关键.3、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.4、C【分析】根据平行线的性质可求解∠ABC的度数,利用三角形的内角和定理及平角的定义可求解.【详解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故选:C.【点睛】本题主要考查平行线的性质,三角形的内角和定理,掌握平行线的性质是解题的关键.5、A【分析】主视图、左视图、俯视图是分别从正面、左侧面、上面看,得到的图形,根据要求判断每个立体图形对应视图是否不同即可.【详解】解:A.圆的主视图是矩形,左视图是圆,故两个视图不同,正确.B.正方体的主视图与左视图都是正方形,错误.C.圆锥的主视图和俯视图都是等腰三角形,错误.D.球的主视图与左视图都是圆,错误.故选:A【点睛】简单几何体的三视图,此类型题主要看清题目要求,判断的是哪种视图即可.6、C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.7、B【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】解:连接OA、OB,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣80°=100°,∴∠ACB=∠AOB=×100°=50°.故选:B.【点睛】本题考查圆的切线,关键在于牢记圆切线常用辅助线:连接切点与圆心.8、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】抛物线向右平移个单位,得:,再向下平移个单位,得:.故选:.【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.9、C【分析】如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.【详解】如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC==,∴BC=20海里.故选C.考点:解直角三角形的应用-方向角问题.10、C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:∵菱形的对角线互相垂直且平分,∴勾股定理求出菱形的边长=5,∴菱形的周长=20,故选C.【点睛】本题考查了菱形对角线的性质,属于简单题,熟悉概念是解题关键.11、C【解析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【详解】延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选C.【点睛】本题考查了平行线的判定,三角形外角的性质,比较简单.12、A【解析】根据解直角三角形的三角函数解答即可【详解】如图,∵cos53°=,∴AB=故选A【点睛】此题考查解直角三角形的三角函数解,难度不大二、填空题(每题4分,共24分)13、【分析】已知A(6,2)、B(6,0)两点则AB=2,以坐标原点O为位似中心,相似比为,则A′B′:AB=2:2.即可得出A′B′的长度等于2.【详解】∵A(6,2)、B(6,0),∴AB=2.又∵相似比为,∴A′B′:AB=2:2,∴A′B′=2.【点睛】本题主要考查位似的性质,位似比就是相似比.14、1【分析】作BD⊥x轴于点D,如图,根据菱形的性质和平行线的性质可得∠BAD=∠COA,于是可得,在Rt△ABD中,由AB=5则可根据勾股定理求出BD和AD的长,进而可得点B的坐标,再把点B坐标代入双曲线的解析式即可求出k.【详解】解:作BD⊥x轴于点D,如图,∵菱形OABC的边长为5,∴AB=OA=5,AB∥OC,∴∠BAD=∠COA,∴在Rt△ABD中,设BD=3x,AD=4x,则根据勾股定理得:AB=5x=5,解得:x=1,∴BD=3,AD=4,∴OD=9,∴点B的坐标是(9,3),∵的图象经过顶点B,∴k=3×9=1.故答案为:1.【点睛】本题考查了菱形的性质、解直角三角形、勾股定理和待定系数法求函数的解析式等知识,属于常考题型,熟练应用上述知识、正确求出点B的坐标是解题的关键.15、①②③【分析】①由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正确;②由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG,求出AC,AG,即可得出②正确;③由勾股定理求出DF,由GE=tan∠2•ED求出GE,即可得出③正确;④由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出④不正确.【详解】∵四边形ABCD是菱形,∴∠FAG=∠EAG,AB=AD,BC∥AD,∴∠1=∠GAD.∵∠1=∠2,∴∠GAD=∠2,∴AG=GD.∵GE⊥AD,∴GE垂直平分AD,∴AE=ED.∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,∵,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正确;连接BD交AC于点O.∵DF⊥AB,F为边AB的中点,∴AFAB=1,AD=BD.∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AO=2AB•cos∠BAC=2×22,AG,∴CG=AC﹣AG=2,∴CG=2GA,∴②正确;∵GE垂直平分AD,∴EDAD=1,由勾股定理得:DF,GE=tan∠2•ED=tan30°×1,∴DF+GECG,∴③正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FGAG,S四边形BFGC=S△ABC﹣S△AGF211,∴④不正确.故答案为:①②③.【点睛】本题考查了菱形的性质、全等三角形的判定与性质、勾股定理、三角函数、线段垂直平分线的性质、含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.16、2【分析】所有场数中,设分出胜负有x场,平局y场,可知分出胜负的x场里,只有胜利一队即3分,总得分为3x;平局里两队各得1分,总得分为2y;所以有3x+2y=1.又根据“平局数不超过比赛场数的”可求出x与y之间的关系,进而得到满足的9组非负整数解.又设有a人参赛,每人要与其余的(a-1)人比赛,即共a(a-1)场,但这样每两人之间是比赛了两场的,所以单循环即场,即=x+y,找出x与y的9组解中满足关于a的方程有正整数解,即求出a的值.【详解】设所有比赛中分出胜负的有x场,平局y场,得:由①得:2y=1-3x由②得:2y≤x∴1-3x≤x解得:x≥,∵x、y均为非负整数∴,,,……,设参赛选手有a人,得:=x+y化简得:a2-a-2(x+y)=0∵此关于a的一元二次方程有正整数解∴△=1+8(x+y)必须为平方数由得:1+8×(54+24)=625,为25的平方∴解得:a1=-12(舍去),a2=2∴共参赛选手有2人.故答案为:2.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,一元二次方程的应用.由于要求的参赛人数与条件给出的等量关系没有直接联系,故可大胆多设个未知数列方程或不等式,再逐步推导到要求的方向.17、【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=,∵DM⊥BC,DC=DB,∴CM=BM=,∴EM=CE-CM=5-3=2,∵DM=,∴由勾股定理得,DE=,∵CD=CE=5,CN⊥DE,∴DN=EN=,∴由勾股定理得,CN=,∴sin∠DEC=.故答案为:.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.18、1【分析】直接把点(2,5)代入反比例函数求出k的值即可.【详解】∵点(2,5)在反比例函数的图象上,∴5=,解得k=1.故答案为:1.【点睛】此题考查求反比例函数的解析式,利用待定系数法求函数的解析式.三、解答题(共78分)19、.【分析】利用三角函数求出,,求出AB的值,过点作于点M,可得,,利用三角函数可得:,,即可得出AC的值.【详解】在中,,,∴,又∵在中,,∴,∴(米),过点作于点M,如图所示,∵,,∴,,∴在中,,∴,,∵,,∴,在中,,∴米.【点睛】本题考查了仰角、俯角的问题及解直角三角形的应用,解答本题的关键是结合图形构造直角三角形,利用三角函数解直角三角形.20、,(4,1),(1,0)【详解】分析:利用待定系数法、描点法即可解决问题;本题解析:设二次函数的解析式y=ax²+bx+c.把(-1,0)(0,1),(2,9)代得到解得,∴二次数解析式y=-x+4x+1.当x=4时,y=1,当y=0时,x=-1或1.21、(1);(2).【分析】(1)从箱子中任意摸出一个球是白球的概率即是白球所占的比值;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验,此题要求画树状图,要按要求解答.【详解】解:(1)从箱子中任意摸出一个球是白球的概率是(2)记两个白球分别为白1与白2,画树状图如图所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率.22、(1)详见解析;(2)详见解析;(3)详见解析.【分析】(1)根据折叠和正方形的性质结合相似三角形的判定定理即可得出答案;(2)设BE=x,利用勾股定理得出x的值,再利用相似三角形的性质证明即可得出答案;(3)设BM=x,AM=a-x,利用勾股定理和相似三角形的性质即可得出答案.【详解】证明:(1)∵四边形是正方形,∴,∴,∵为折痕,∴,∴,∴,在与中∵,,∴;(2)∵为中点,∴,设,则,在中,,∴,即,∴,∴,,由(1)知,,∴,∴,,∴;(3)设,则,,在中,,∴,即,解得:,由(1)知,,∴,∵,∴.【点睛】本题考查的是相似三角形的综合,涉及的知识点有折叠的性质、正方形的性质、勾股定理和相似三角形,难度系数较大.23、(1)证明见解析(2)4【分析】(1)由AD为直径,得到所对的圆周角为直角,利用等角的余角相等得到一对角相等,进而利用两对角对应相等的三角形相似即可得证;(2)连接OM,由BC为圆的切线,得到OM与BC垂直,利用锐角三角函数定义及勾股定理即可求出所求.【详解】解:(1)∵AD为圆O的直径,∴∠AMD=90°.∵∠BMC=180°,∴∠2+∠3=90°.∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,∴△ABM∽△MCD;(2)连接OM.∵BC为圆O的切线,∴OM⊥BC.∵AB⊥BC,∴sin∠E==,即=.∵AD=8,AB=5,∴=,即OE=16,根据勾股定理得:ME===4.【点睛】本题考查了相似三角形的判定与性质,圆周角定理,锐角三角函数定义以及切线的性质,熟练掌握相似三角形的判定与性质是解答本题的关键.24、(1);(2)点运动到坐标为,面积最大.【分析】(1)用待定系数法即可求抛物线解析式.
(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t表示点F坐标,进而表示PF的长.把△/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度绿色环保报社美缝施工及维护一体化服务合同
- 软件安全开发标准作业指导书
- IT服务管理规范作业指导书
- 光伏发电组件销售合同
- 楼盘销售代理合同大曰金地产
- 补充协议能签几次
- 金融行业合规经营操作手册
- 桶装水和学校签的合同
- 木材加工厂出租合同
- 劳务派遣合同书样本
- 初中生物中考真题(合集)含答案
- 《医学免疫学实验》课件
- C139客户开发管理模型
- GB/T 5019.5-2023以云母为基的绝缘材料第5部分:电热设备用硬质云母板
- 《工伤保险专题》课件
- 2024年农发集团招聘笔试参考题库含答案解析
- 京东运营课件
- 安宁疗护中的人文护理课件
- 头痛的护理小课件
- 年度工作总结与计划会议
- 热工基础(第二版)-张学学(8)第七章
评论
0/150
提交评论