2022年云南省昆明市云南师范大实验中学数学九年级上册期末综合测试试题含解析_第1页
2022年云南省昆明市云南师范大实验中学数学九年级上册期末综合测试试题含解析_第2页
2022年云南省昆明市云南师范大实验中学数学九年级上册期末综合测试试题含解析_第3页
2022年云南省昆明市云南师范大实验中学数学九年级上册期末综合测试试题含解析_第4页
2022年云南省昆明市云南师范大实验中学数学九年级上册期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若,,以顶点为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()A. B. C. D.2.如图,在□ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD=2:3,则AP:PR的值为()A.3:5 B.2:3 C.3:4 D.3:23.二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是()A.±2 B.2 C.±2.5 D.2.54.在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A. B. C. D.5.如图,活动课小明利用一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE为9m,AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是()A.3m B.27m C.m D.m6.如图,,两条直线与三条平行线分别交于点和.已知,则的值为()A. B. C. D.7.如图,点,在双曲线上,且.若的面积为,则().A.7 B. C. D.8.若关于x的一元二次方程x2+2x﹣m=0的一个根是x=1,则m的值是()A.1 B.2 C.3 D.49.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)10.如图,矩形中,,,点为矩形内一动点,且满足,则线段的最小值为()A.5 B.1 C.2 D.311.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+512.已知二次函数,当时随的增大而减小,且关于的分式方程的解是自然数,则符合条件的整数的和是()A.3 B.4 C.6 D.8二、填空题(每题4分,共24分)13.在不透明的袋中装有大小和质地都相同的个红球和个白球,某学习小组做“用频率估计概率"的试验时,统计了摸到红球出现的频率并绘制了折线统计图,则白球可能有_______个.14.已知直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,过点D(0,-1)的直线分别交、于点E、F,若△BDE与△BDF的面积相等,则k=____.15.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.16.比较sin30°、sin45°的大小,并用“<”连接为_____.17.如图,把置于平面直角坐标系中,点A的坐标为,点B的坐标为,点P是内切圆的圆心.将沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为,第二次滚动后圆心为,…,依此规律,第2019次滚动后,内切圆的圆心的坐标是________.18.数据8,9,10,11,12的方差等于______.三、解答题(共78分)19.(8分)用适当的方法解下列一元二次方程:(1)x2+4x﹣2=0;(2)(x+2)2=3(x+2).20.(8分)如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)若AB=24cm,CD=8cm,求(1)中所作圆的半径.21.(8分)阅读下面的材料:小明同学遇到这样一个问题,如图1,AB=AE,∠ABC=∠EAD,AD=mAC,点P在线段BC上,∠ADE=∠ADP+∠ACB,求的值.小明研究发现,作∠BAM=∠AED,交BC于点M,通过构造全等三角形,将线段BC转化为用含AD的式子表示出来,从而求得的值(如图2).(1)小明构造的全等三角形是:_________≌________;(2)请你将小明的研究过程补充完整,并求出的值.(3)参考小明思考问题的方法,解决问题:如图3,若将原题中“AB=AE”改为“AB=kAE”,“点P在线段BC上”改为“点P在线段BC的延长线上”,其它条件不变,若∠ACB=2α,求:的值(结果请用含α,k,m的式子表示).22.(10分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?23.(10分)如图,四边形ABCD内接于⊙O,点E在CB的延长线上,BA平分∠EBD,AE=AB.(1)求证:AC=AD.(2)当,AD=6时,求CD的长.24.(10分)某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润,商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件;若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的函数关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).25.(12分)如图,Rt△ABC中,∠B=90°,点D在边AC上,且DE⊥AC交BC于点E.(1)求证:△CDE∽△CBA;(2)若AB=3,AC=5,E是BC中点,求DE的长.26.某商场秋季计划购进一批进价为每件40元的T恤进行销售.(1)根据销售经验,应季销售时,若每件T恤的售价为60元,可售出400件;若每件T恤的售价每提高1元,销售量相应减少10件.①假设每件T恤的售价提高x元,那么销售每件T恤所获得的利润是____________元,销售量是_____________________件(用含x的代数式表示);②设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每件T恤的售价.(2)根据销售经验,过季处理时,若每件T恤的售价定为30元亏本销售,可售出50件;若每件T恤的售价每降低1元,销售量相应增加5条,①若剩余100件T恤需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每件T恤的售价应是多少元?②若过季需要处理的T恤共m件,且100≤m≤300,过季亏损金额最小是__________________________元(用含m的代数式表示).(注:抛物线顶点是)

参考答案一、选择题(每题4分,共48分)1、A【分析】由题意可知C(0,0),且过点(2,3),设该抛物线的解析式为y=ax2,将两点代入即可得出a的值,进一步得出解析式.【详解】根据题意,得该抛物线的顶点坐标为C(0,0),经过点(2,3).设该抛物线的解析式为y=ax2.3=a22.a=.该抛物线的解析式为y=x2.故选A.【点睛】本题考查了二次函数的应用,根据题意得出两个坐标是解题的关键.2、A【分析】证得△ADP∽△RBP,可得,由AD=BC,可得.【详解】∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故选:A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的对应线段成比例.3、D【解析】分m≤0、m≥1和0≤m≤1三种情况,根据y的最大值为4,结合二次函数的性质求解可得.【详解】y=﹣x2+2mx=﹣(x﹣m)2+m2(m为常数),①若m≤0,当x=0时,y=﹣(0﹣m)2+m2=4,m不存在,②若m≥1,当x=1时,y=﹣(1﹣m)2+m2=4,解得:m=2.5;③若0≤m≤1,当x=m时,y=m2=4,即:m2=4,解得:m=2或m=﹣2,∵0≤m≤1,∴m=﹣2或2都舍去,故选:D.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据题意分三种情况讨论.4、B【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论;当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,观察只有B选项符合,故选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.5、C【分析】先根据题意得出AD的长,在中利用锐角三角函数的定义求出CD的长,由CE=CD+DE即可得出结论.【详解】∵AB⊥BE,DE⊥BE,AD∥BE,∴四边形ABED是矩形,∵BE=9m,AB=1.5m,∴AD=BE=9m,DE=AB=1.5m,在Rt中,∵∠CAD=30°,AD=9m,∴∴(m).故选:C.【点睛】本题考查的是解直角三角形在实际生活中的应用,熟知锐角三角函数的定义是解答此题的关键.6、C【分析】由得设可得答案.【详解】解:,,设则故选C.【点睛】本题考查的是平行线分线段成比例,比例线段,掌握这两个知识点是解题的关键.7、A【分析】过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为点C,点D,根据待定系数法求出k的值,设点,利用△AOB的面积=梯形ACDB的面积+△AOC的面积-△BOD的面积=梯形ACDB的面积进行求解即可.【详解】如图所示,过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为点C,点D,由题意知,,设点,∴△AOB的面积=梯形ACDB的面积+△AOC的面积-△BOD的面积=梯形ACDB的面积,∴,解得,或(舍去),经检验,是方程的解,∴,∴,故选A.【点睛】本题考查了利用待定系数法求反比例函数的表达式,反比例函数系数k的几何意义,用点A的坐标表示出△AOB的面积是解题的关键.8、C【分析】根据一元二次方程的解的定义,把x=1代入方程得1+2﹣m=0,然后解关于m的一次方程即可.【详解】解:把x=1代入x2+2x﹣m=0得1+2﹣m=0,解得m=1.故选:C.【点睛】本题考查一元二次的代入求参数,关键在于掌握基本运算方法.9、B【解析】用关于原点的对称点的坐标特征进行判断即可.【详解】点P(-1,2)关于原点的对称点的坐标为(1,-2),故选:B.【点睛】根据两个点关于原点对称时,它们的坐标符号相反.10、B【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.11、A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.12、A【分析】由二次函数的增减性可求得对称轴,可求得a取值范围,再求分式方程的解,进行求解即可.【详解】解:

∵y=-x2+(a-2)x+3,

∴抛物线对称轴为x=,开口向下,

∵当x>2时y随着x的增大而减小,

∴≤2,解得a≤6,

解关于x的分式方程可得x=,且x≠3,则a≠5,

∵分式方程的解是自然数,

∴a+1是2的倍数的自然数,且a≠5,

∴符合条件的整数a为:-1、1、3,

∴符合条件的整数a的和为:-1+1+3=3,

故选:A.【点睛】此题考查二次函数的性质,由二次函数的性质求得a的取值范围是解题的关键.二、填空题(每题4分,共24分)13、6【分析】从表中的统计数据可知,摸到红球的频率稳定在0.33左右,根据红球的概率公式得到相应方程求解即可;【详解】由统计图,知摸到红球的频率稳定在0.33左右,∴,经检验,n=6是方程的根,故答案为6.【点睛】此题主要考查频率与概率的相关计算,熟练掌握,即可解题.14、【分析】先利用一次函数图像相关求出A、B、C的坐标,再根据△BDE与△BDF的面积相等,得到点E、F的横坐标相等,从而进行分析即可.【详解】解:由直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,求出A、B、C的坐标分别为,将点D(0,-1)代入得到,又△BDE与△BDF的面积相等,即知点E、F的横坐标相等,且直线分别交、于点E、F,可知点E、F为关于原点对称,即知坡度为45°,斜率为.故k=.【点睛】本题考查一次函数图像性质与几何图形的综合问题,熟练掌握一次函数图像性质以及等面积三角形等底等高的概念进行分析是解题关键.15、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,∴原方程为,解得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.16、<.【解析】直接利用特殊角的三角函数值代入求出答案.【详解】解:∵sin30°=12、sin45°=22,

∴sin30°<sin45°.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17、【分析】由勾股定理得出AB=,求出Rt△OAB内切圆的半径=1,因此P的坐标为(1,1),由题意得出P3的坐标(3+5+4+1,1),得出规律:每滚动3次为一个循环,由2019÷3=673,即可得出结果.【详解】解:∵点A的坐标为(0,4),点B的坐标为(3,0),∴OA=4,OB=3,∴AB=,∴Rt△OAB内切圆的半径=,∴P的坐标为(1,1),∵将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,∴P3(3+5+4+1,1),即(13,1),每滚动3次为一个循环,∵2019÷3=673,∴第2019次滚动后,Rt△OAB内切圆的圆心P2019的横坐标是673×(3+5+4)+1,即P2019的横坐标是8077,∴P2019的坐标是(8077,1);故答案为:(8077,1).【点睛】本题考查了三角形的内切圆与内心、勾股定理、坐标类规律探索等知识;根据题意得出规律是解题的关键.18、2【分析】根据方差的公式计算即可.【详解】这组数据的平均数为∴这组数据的方差为故答案为2.【点睛】此题主要考查方差的计算,牢记公式是解题关键.三、解答题(共78分)19、(1)x=﹣2±;(2)x=﹣2或x=1【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2+4x﹣2=0,∴x2+4x+4=6,∴(x+2)2=6,∴x=﹣2±.(2)∵(x+2)2=3(x+2),∴(x+2)(x+2﹣3)=0,∴x=﹣2或x=1.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20、(1)答案见解析;(2)13cm【分析】(1)根据垂径定理,即可求得圆心;(2)连接OA,根据垂径定理与勾股定理,即可求得圆的半径长.【详解】解:(1)连接BC,作线段BC的垂直平分线交直线CD与点O,以点O为圆心,OA长为半径画圆,圆O即为所求;(2)如图,连接OA∵OD⊥AB∴AD=AB=12cm设圆O半径为r,则OA=r,OD=r-8直角三角形AOD中,AD2+OD2=OA2∴122+(r-8)2=r2∴r=13∴圆O半径为13cm【点睛】本题考查了垂径定理的应用,解答本题的关键是熟练掌握圆中任意两条弦的垂直平分线的交点即为圆心.21、(1);(2);(3).【分析】(1)根据已知条件直接猜想得出结果;(2)过点作交于点,易证,再根据结合已知条件得出结果;(3)过点作交于点,过点作,得出,根据相似三角形的性质及已知条件得出,进而求解.【详解】(1)解:;(2)过点作交于点.在中和,,,,∴.∴,.∴.∵,,∴.∵.∵,∴.∴.∴.(3)解:过点作交于点.在中和,,,∴.∴,.∴,.∵,∴.∵,,∴.∴.过点作.∴,,.在中,,∴.∴.∴.【点睛】本题考查了三角形全等的性质及判定,相似三角形的判定与性质,解题的关键是熟练掌握这些性质并能灵活运用.22、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.【解析】(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;(3)设M(a,a2),得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=﹣a2+3a+9,确定二次函数的最值即可.【详解】(1)∵点A是直线与抛物线的交点,且横坐标为-2,,A点的坐标为(-2,1),设直线的函数关系式为y=kx+b,将(0,4),(-2,1)代入得解得∴y=x+4∵直线与抛物线相交,解得:x=-2或x=8,

当x=8时,y=16,

∴点B的坐标为(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴点C的坐标为(-,0),(0,0),(6,0),(32,0)(3)设M(a,a2),则MN=,又∵点P与点M纵坐标相同,∴x+4=a2,∴x=,∴点P的横坐标为,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴当a=6时,取最大值1,∴当M的横坐标为6时,MN+3PM的长度的最大值是123、(1)证明见解析;(2)CD=1.【分析】(1)利用BA平分∠EBD得到∠ABE=∠ABD,再根据圆周角定理得到∠ABE=∠ADC,∠ABD=∠ACD,利用等量代换得到∠ACD=∠ADC,从而得到结论;(2)根据等腰三角形的性质得到∠E=∠ABE,则可证明△ABE∽△ACD,然后根据相似比求出CD的长.【详解】(1)证明:∵BA平分∠EBD,∴∠ABE=∠ABD,∵∠ABE=∠ADC,∠ABD=∠ACD,∴∠ACD=∠ADC,∴AC=AD;(2)解:∵AE=AB,∴∠E=∠ABE,∴∠E=∠ABE=∠ACD=∠ADC,∴△ABE∽△ACD,∴==,∴CD=AD=×6=1.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了圆周角定理.24、(1);(2).【分析】(1)先利用待定系数法确定每月销售量y与x的函数关系式y=-30x+960;

(2)根据每月获得的利润等于销售量乘以每件的利润得到w=(-30x+960)(x-16),接着展开后进行配方得到顶点式P=-30(x-24)2+1920,然后根据二次函数的最值问题求解.【详解】(1)设y=kx+b,∵当x=20时,y=360;x=25时,y=210∴,解得∴y=-30x+960(16≤x≤32);(2)设每月所得总利润为w元,则w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+1920.∵-30<0∴当x=24时,w有最大值.即销售价格定为24元/件时,才能使每月所获利润最大,每月的最大利润为1920元.25、(1)证明见解析;(2)DE=.【分析】(1)由DE⊥AC,∠B=90°可得出∠CDE=∠B,再结合公共角相等,即可证出△CDE∽△CBA;(/r/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论