2022年陕西省西安市西电附中九年级数学上册期末统考试题含解析_第1页
2022年陕西省西安市西电附中九年级数学上册期末统考试题含解析_第2页
2022年陕西省西安市西电附中九年级数学上册期末统考试题含解析_第3页
2022年陕西省西安市西电附中九年级数学上册期末统考试题含解析_第4页
2022年陕西省西安市西电附中九年级数学上册期末统考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.方程x(x﹣1)=0的解是().A.x=1 B.x=0 C.x1=1,x2=0 D.没有实数根2.若关于的一元二次方程有两个不相等的实数根,则的取值范围是(

)A. B.且 C. D.且3.下列根式中,是最简二次根式的是()A. B. C. D.4.已知函数是的图像过点,则的值为()A.-2 B.3 C.-6 D.65.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.6.已知关于的一元二次方程有两个相等的实数根,则()A.4 B.2 C.1 D.﹣47.在Rt△ABC中,∠C=90°,cosA=,AC=,则BC等于()A. B.1 C.2 D.38.下图中,不是中心对称图形的是()A. B. C. D.9.设等边三角形的边长为x(x>0),面积为y,则y与x的函数关系式是()A.y=x2 B.y= C.y= D.y=10.用配方法解一元二次方程,变形正确的是()A. B. C. D.11.如图是由个完全相同的小正方形搭成的几何体,如果将小正方体放到小正方体的正上方,则它的()A.主视图会发生改变 B.俯视图会发生改变C.左视图会发生改变 D.三种视图都会发生改变12.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.二、填空题(每题4分,共24分)13.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF的最小值是_____.14.如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,则图中阴影部分的面积为______.15.若扇形的半径为3,圆心角120,为则此扇形的弧长是________.16.关于的方程没有实数根,则的取值范围为____________17.如图,点O是△ABC的内切圆的圆心,若∠A=100°,则∠BOC为_____.18.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.三、解答题(共78分)19.(8分)如图,是的直径,是弦,是弧的中点,过点作的切线交的延长线于点,过点作于点,交于点.(1)求证:;(2)若,,求的长.20.(8分)如图,在平面直角坐标系xOy中,A(3,4),B(0,﹣1),C(4,0).(1)以点B为中心,把△ABC逆时针旋转90°,画出旋转后的图形;(2)在(1)中的条件下,①点C经过的路径弧的长为(结果保留π);②写出点A'的坐标为.21.(8分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)22.(10分)解方程(1)x2﹣4x+2=0(2)(x﹣3)2=2x﹣623.(10分)在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,连接EF,则EF的最小值为多少cm?24.(10分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.25.(12分)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根.(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标.26.对于平面直角坐标系中的两个图形K1和K2,给出如下定义:点G为图形K1上任意一点,点H为K2图形上任意一点,如果G,H两点间的距离有最小值,则称这个最小值为图形K1和K2的“近距离”。如图1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),边长为的正方形PQMN,对角线NQ平行于x轴或落在x轴上.(1)填空:①原点O与线段BC的“近距离”为;②如图1,正方形PQMN在△ABC内,中心O’坐标为(m,0),若正方形PQMN与△ABC的边界的“近距离”为1,则m的取值范围为;(2)已知抛物线C:,且-1≤x≤9,若抛物线C与△ABC的“近距离”为1,求a的值;(3)如图2,已知点D为线段AB上一点,且D(5,-2),将△ABC绕点A顺时针旋转α(0º<α≤180º),将旋转中的△ABC记为△AB’C’,连接DB’,点E为DB’的中点,当正方形PQMN中心O’坐标为(5,-6),直接写出在整个旋转过程中点E运动形成的图形与正方形PQMN的“近距离”.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据因式分解法解方程得到x=0或x﹣1=0,解两个一元一次方程即可.【详解】解:x(x﹣1)=0x=0或x﹣1=0∴x1=1,x2=0,故选C.【点睛】本题考查因式分解法解一元二次方程,熟练掌握一元二次方程的解法是关键.2、B【分析】根据一元二次方程的定义和根的判别式列出不等式求解即可.【详解】由题意得:解得:且故选:B.【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.3、D【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),逐一判断即可得答案.【详解】A.=,故该选项不是最简二次根式,不符合题意,B.=,故该选项不是最简二次根式,不符合题意,C.=,故该选项不是最简二次根式,不符合题意,D.是最简二次根式,符合题意,故选:D.【点睛】本题考查了对最简二次根式的理解,被开方数不含有能开的尽方的因式或因数,被开方数不含有分数的二次根式叫做最简二次根式;能熟练地运用定义进行判断是解此题的关键.4、C【解析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数的图象经过点(-2,3),∴k=-2×3=-1.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.6、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于的一元一次方程,解方程即可得出结论.【详解】解:∵方程有两个相等的实数根,∴,解得:.故选A.【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于的一元一次方程是解题的关键.7、B【分析】根据余弦函数的定义、勾股定理,即可直接求解.【详解】解:∵在Rt△ABC中,∠C=90°,cosA=,AC=,∴,即,,∴=1,

故选:B.【点睛】本题考查了解直角三角形,解题的基础是掌握余弦函数的定义和勾股定理.8、D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、是中心对称图形,故此选项不合题意;

B、是中心对称图形,故此选项不合题意;

C、是中心对称图形,故此选项不合题意;

D、不是中心对称图形,故此选项符合题意;

故选:D.【点睛】考查了中心对称图形,关键是掌握中心对称图形定义.9、D【分析】作出三角形的高,利用直角三角形的性质及勾股定理可得高,利用三角形的面积=底×高,把相关数值代入即可求解.【详解】解:作出BC边上的高AD.∵△ABC是等边三角形,边长为x,∴CD=x,∴高为h=x,∴y=x×h=.故选:D.【点睛】此题主要考查了三角形的面积的求法,找到等边三角形一边上的高是难点,求出三角形的高是解决问题的关键.10、B【分析】根据完全平方公式和等式的性质进行配方即可.【详解】解:故选:B.【点睛】本题考查了配方法,其一般步骤为:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.11、A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体放到小正方体的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.12、D【解析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.二、填空题(每题4分,共24分)13、【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴=,∴=,∴y=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴x=时,y有最大值,∴CF的最大值为,∴DF的最小值为5﹣=,∴AF的最小值===,故答案为.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.14、【分析】根据题意,作出合适的辅助线,由图可知,阴影部分的面积=△CBF的面积,根据题目的条件和图形,可以求得△BCF的面积,从而可以解答本题.【详解】连接OD、OF、BF,作DE⊥OA于点E,∵ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,∴OA=OD=AD=OF=OB=2,DC∥AB,∴△DOA是等边三角形,∠AOD=∠FDO,∴∠AOD=∠FDO=60°,同理可得,∠FOB=60°,△BCD是等边三角形,∵弓形DF的面积=弓形FB的面积,DE=OD•sin60°=,∴图中阴影部分的面积为:=,故答案为:.【点睛】本题考查了求阴影部分面积的问题,掌握三角形面积公式是解题的关键.15、【解析】根据弧长公式可得:=2π,故答案为2π.16、【分析】根据题意利用根的判别式进行分析计算,即可求出的取值范围.【详解】解:∵关于的方程没有实数根,∴,解得.故答案为:.【点睛】本题考查根的判别式相关,熟练掌握一元二次方程中,当时,方程没有实数根是解答此题的关键.17、140°.【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.18、5【解析】试题解析:∵半径为10的半圆的弧长为:×2π×10=10π∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=5三、解答题(共78分)19、(1)见解析;(2)【分析】(1)连接OC,交AE于点H.根据垂径定理得到OC⊥AE.根据切线的性质得到OC⊥GC,于是得到结论;

(2)根据三角函数的定义得到sin∠OCD=.连接BE.AB是⊙O的直径,解直角三角形即可得到结论.【详解】(1)证明:连接,交于点.是弧的中点,是的切线,,,;(2),,..在中,,,连接是的直径,.在中,,,在Rt△AEB中,,AB=10,.【点睛】本题考查了切线的性质,三角函数的定义,平行线的判定,正确的作出辅助线是解题的关键.20、(1)见解析;(2)①,②(﹣5,2).【分析】(1)利用网格特点和旋转的性质画出A、C的对应点A′、C′,然后顺次连接即可;(2)①先利用勾股定理计算出BC的长,然后利用弧长公式计算;②利用(1)中所画图形写出点A′的坐标.【详解】解:(1)如图,△A′BC′为所作;(2)①BC=,故点C经过的路径弧的长==π;②点A′的坐标为(﹣5,2).故答案为:π,(﹣5,2).【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了弧长公式的应用.21、(1)见解析;(2).【分析】(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可.(2)求出∠BOD=∠GOB,从而求出∠BOD的度数,根据弧长公式求出即可.【详解】解:(1)证明:连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°.∴BD⊥AC.∵AB=BC,∴AD=DC.∵AO=OB,∴DO∥BC.∵DE⊥BC,∴DE⊥OD.∵OD为半径,∴DE是⊙O切线.(2)连接OG,∵DG⊥AB,OB过圆心O,∴弧BG=弧BD.∵∠A=35°,∴∠BOD=2∠A=70°.∴∠BOG=∠BOD=70°.∴∠GOD=140°.∴劣弧DG的长是.22、(1)x=2;(2)x=3或x=1.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【详解】(1)∵x2﹣4x=﹣2,∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2,解得x﹣2=,则x=2;(2)∵(x﹣3)2﹣2(x﹣3)=0,∴(x﹣3)(x﹣1)=0,则x﹣3=0或x﹣1=0,解得x=3或x=1.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.23、4.8cm【分析】连接AP,先利用勾股定理的逆定理证明△ABC为直角三角形,∠A=90°,可知四边形AEPF为矩形,则AP=EF,当AP的值最小时,EF的值最小,利用垂线段最短得到AP⊥BC时,AP的值最小,然后利用面积法计算此时AP的长即可.【详解】解:连接AP,∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC是直角三角形,∴∠A=90°,又∵PE⊥AB,PF⊥AC,∴四边形AEPF是矩形,∴AP=EF,当AP⊥BC时,EF的值最小,∵,∴.解得AP=4.8cm.∴EF的最小值是4.8cm.【点睛】此题考查了直角三角形的判定及性质、矩形的判定与性质.关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.利用矩形对角线线段对线段进行转换求解是解题关键.24、(1)证明见解析;(2)证明见解析.【分析】(1)连接OD,根据等腰三角形的性质结合角平分线的性质可得出∠CAD=∠ODA,利用“内错角相等,两直线平行”可得出AE//OD,结合切线的性质即可证出DE⊥AE;(2)过点D作DM⊥AB于点M,连接CD、DB,根据角平分线的性质可得出DE=DM,结合AD=AD、∠AED=∠AMD=90°即可证出△DAE≌△DAM(SAS),根据全等三角形的性质可得出AE=AM,由∠EAD=∠MAD可得出,进而可得出CD=BD,结合DE=DM可证出Rt△DEC≌Rt△DMB(HL),根据全等三角形的性质可得出CE=BM,结合AB=AM+BM即可证出AE+CE=AB.【详解】连接OD,如图1所示,,AD平分,,,,,是的切线,,,;过点D作于点M,连接CD、DB,如图2所示,平分,,,,在和中,,≌,,,,,在和中,,≌,,.【点睛】本题考查了全等三角形的判定与性质、切线的性质、角平分线的性质、等腰三角形的性质、平行线的判定与性质以及圆周角定理,解题的关键是:(1)利用平行线的判定定理找出AE//OD;(2)利用全等三角形的性质找出AE=AM、CE=BM.25、(1)线段BC的长度为4;(2)AC⊥AB,理由见解析;(3)点D的坐标为(﹣2,1)【解析】(1))解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;

(2)由A、B、C三点坐标可知OA2=OC•OB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;

(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;【详解】解:(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,(2)∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐标为(﹣2,1),【点睛】本题考查二次函数的综合问题,涉及一元二次方程的解法,相似三角形的判定,等腰三角形的性质,垂直平分线的判定等知识,内容较为综合,需要学生灵活运用所知识解决.26、(1)①2;②;(2)或;(3)点E运动形成的图形与正方形PQMN的“近距离”为.【分析】(1)①由垂线段最短,即可得到答案;②根据题意,找出正方形PQMN与△ABC的边界的“近距离”为1,的临界点,然后分别求出m的最小值和最大值,即可得到m的取值范围;(2)根据题意,抛物线与△ABC的“近距离”为1时,可分为两种情况:当点C到抛物线的距离为1,即CD=1;当抛物线与线段AB的距离为1时,即GH=1;分别求出a的值,即可得到答案;(3)根据题意,取AB的中点F,连接EF,求出EF的长度,然后根据题意,求出点F,点Q的坐标,求出FQ的长度,即可得到EQ的长度,即可得到答案.【详解】解:(1)①∵B(9,2),C(,2),∴点B、C的纵坐标相同,∴线段BC∥x轴,∴原点O到线段BC的最短距离为2;即原点O与线段BC的“近距离”为2;故答案为:2;②∵A(-1,-8),B(9,2),C(-1,2),∴线段BC∥x轴,线段AC∥y轴,∴/r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论