版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为()A. B. C. D.2.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为()A. B. C. D.3.已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是()A. B. C. D.4.复数的虚部为()A.—1 B.—3 C.1 D.25.已知向量,,设函数,则下列关于函数的性质的描述正确的是A.关于直线对称 B.关于点对称C.周期为 D.在上是增函数6.设复数z=,则|z|=()A. B. C. D.7.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是()A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B.从2014年到2018年这5年,高铁运营里程与年价正相关C.2018年高铁运营里程比2014年高铁运营里程增长80%以上D.从2014年到2018年这5年,高铁运营里程数依次成等差数列8.已知集合,,,则()A. B. C. D.9.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}10.设实数、满足约束条件,则的最小值为()A.2 B.24 C.16 D.1411.正三棱柱中,,是的中点,则异面直线与所成的角为()A. B. C. D.12.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设实数x,y满足,则点表示的区域面积为______.14.已知随机变量服从正态分布,若,则_________.15.设双曲线的左焦点为,过点且倾斜角为45°的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为________.16.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.18.(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.19.(12分)已知为椭圆的左、右焦点,离心率为,点在椭圆上.(1)求椭圆的方程;(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.20.(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,.(1)求数列的通项公式;(2)已知数列满足,,设数列的前项和为,求大于的最小的正整数的值.21.(12分)已知函数是自然对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.22.(10分)已知函数,且.(1)若,求的最小值,并求此时的值;(2)若,求证:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
设出A,B的坐标,利用导数求出过A,B的切线的斜率,结合,可得x1x2=﹣1.再写出OA,OB所在直线的斜率,作积得答案.【题目详解】解:设A(),B(),由抛物线C:x2=1y,得,则y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故选:A.点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A,B,,再求切线PA,PB方程,求点P坐标,再根据得到最后求直线与的斜率之积.如果先设点P的坐标,计算量就大一些.2、A【答案解析】
根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【题目详解】解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,解得,作平面,垂足为的外心,所以,且,所以在中,,此为球的半径,.故选:A.【答案点睛】本题考查球的表面积,考查点到平面的距离,属于中档题.3、A【答案解析】
先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.【题目详解】当时,直线和直线,即直线为和直线互相垂直,所以“”是直线和直线互相垂直“的充分条件,当直线和直线互相垂直时,,解得.所以“”是直线和直线互相垂直“的不必要条件.:“”是直线和直线互相垂直“的充分不必要条件,故是假命题.当时,没有零点,所以命题是假命题.所以是真命题,是假命题,是假命题,是假命题.故选:.【答案点睛】本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象,考查学生对这些知识的理解掌握水平.4、B【答案解析】
对复数进行化简计算,得到答案.【题目详解】所以的虚部为故选B项.【答案点睛】本题考查复数的计算,虚部的概念,属于简单题.5、D【答案解析】
当时,,∴f(x)不关于直线对称;当时,,∴f(x)关于点对称;f(x)得周期,当时,,∴f(x)在上是增函数.本题选择D选项.6、D【答案解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.【题目详解】解:z====﹣﹣,则|z|====.故选:D.【答案点睛】本题考查复数的基本概念和基本运算,属于基础题.7、D【答案解析】
由折线图逐项分析即可求解【题目详解】选项,显然正确;对于,,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【答案点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题8、A【答案解析】
求得集合中函数的值域,由此求得,进而求得.【题目详解】由,得,所以,所以.故选:A【答案点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.9、C【答案解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【题目详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【答案点睛】本题主要考查集合的交集运算,属于基础题.10、D【答案解析】
做出满足条件的可行域,根据图形即可求解.【题目详解】做出满足的可行域,如下图阴影部分,根据图象,当目标函数过点时,取得最小值,由,解得,即,所以的最小值为.故选:D.【答案点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.11、C【答案解析】
取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果.【题目详解】解:如图,取中点,连接,,由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则//,,∴即为异面直线与所成角,设,则,,,则,∴.故选:C.【答案点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.12、A【答案解析】
画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【题目详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【答案点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.【题目详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:【答案点睛】本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.14、0.4【答案解析】
因为随机变量ζ服从正态分布,利用正态曲线的对称性,即得解.【题目详解】因为随机变量ζ服从正态分布所以正态曲线关于对称,所.【答案点睛】本题考查了正态分布曲线的对称性在求概率中的应用,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.15、【答案解析】
设直线的方程为,与联立得到A点坐标,由得,,代入可得,即得解.【题目详解】由题意,直线的方程为,与联立得,,由得,,从而,即,从而离心率.故答案为:【答案点睛】本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.16、【答案解析】
先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【题目详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.故答案为:.【答案点睛】本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)证明见解析【答案解析】
(1)对求导,分,,进行讨论,可得的单调性;(2)在定义域内是是增函数,由(1)可知,,设,可得,则,设,对求导,利用其单调性可证明.【题目详解】解:的定义域为,因为,所以,当时,令,得,令,得;当时,则,令,得,或,令,得;当时,,当时,则,令,得;综上所述,当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)在定义域内是是增函数,由(1)可知,此时,设,又因为,则,设,则对于任意成立,所以在上是增函数,所以对于,有,即,有,因为,所以,即,又在递增,所以,即.【答案点睛】本题主要考查利用导数研究含参函数的单调性及导数在极值点偏移中的应用,考查学生分类讨论与转化的思想,综合性大,属于难题.18、(1);(2).【答案解析】
(1)只需分,,三种情况讨论即可;(2)在区间上恒成立,转化为,只需求出即可.【题目详解】(1)当时,,此时不等式无解;当时,,由得;当时,,由得,综上,不等式的解集为;(2)依题意,在区间上恒成立,则,当时,;当时,,所以当时,,由得或,所以实数的取值范围为.【答案点睛】本题考查绝对值不等式的解法、不等式恒成立问题,考查学生分类讨论与转化与化归的思想,是一道基础题.19、(1);(2)存在,.【答案解析】
(1)由条件建立关于的方程组,可求得,得出椭圆的方程;(2)①当直线的斜率不存在时,可求得,求得,②当直线的斜率存在且不为0时,设联立直线与椭圆的方程,求出线段,再由得出线段,根据等差中项可求得,得出结论.【题目详解】(1)由条件得,所以椭圆的方程为:;(2),①当直线的斜率不存在时,,此时,②当直线的斜率存在且不为0时,设,联立消元得,设,,直线的斜率为,同理可得,所以,综合①②,存在常数,使得成等差数列.【答案点睛】本题考查利用椭圆的离心率求椭圆的标准方程,直线与椭圆的位置关系中的弦长公式的相关问题,当两直线的斜率具有关系时,可能通过斜率的代换得出另一条线段的弦长,属于中档题.20、(1)(2)4【答案解析】
(1)利用判断是等差数列,利用求出,利用等比中项建立方程,求出公差可得.(2)利用的通项公式,求出,用错位相减法求出,最后建立不等式求出最小的正整数.【题目详解】解:任意都有,数列是等差数列,,又是与的等比中项,,设数列的公差为,且,则,解得,,;由题意可知,①,②,①﹣②得:,,,由得,,,,满足条件的最小的正整数的值为.【答案点睛】本题考查等差数列的通项公式和前项和公式及错位相减法求和.(1)解决等差数列通项的思路(1)在等差数列中,是最基本的两个量,一般可设出和,利用等差数列的通项公式和前项和公式列方程(组)求解即可.(2)错位相减法求和的方法:如果数列是等差数列,是等比数列,求数列的前项和时,可采用错位相减法,一般是和式两边同乘以等比数列的公比,然后作差求解;在写“”与“”的表达式时应特别注
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度网络安全风险评估与解决方案合同范本3篇
- 二零二五版股权激励合同:某上市公司对高级管理人员股权激励计划3篇
- 2025年度时尚服饰店开业活动承包合同3篇
- 2025年度高端不锈钢医疗器械制造委托合同3篇
- 二零二五版智能穿戴设备代加工合同范本2篇
- 二零二五年度环保型车间生产承包服务合同范本3篇
- 二零二五年高管子女教育援助与扶持合同3篇
- 2025年草场租赁与牧区基础设施建设合同3篇
- 二零二五版涵洞工程劳务分包单价及工期延误赔偿合同3篇
- 二零二五版财务报表编制会计劳动合同范本3篇
- GB/T 34241-2017卷式聚酰胺复合反渗透膜元件
- GB/T 12494-1990食品机械专用白油
- 运输供应商年度评价表
- 成熙高级英语听力脚本
- 北京语言大学保卫处管理岗位工作人员招考聘用【共500题附答案解析】模拟试卷
- 肺癌的诊治指南课件
- 人教版七年级下册数学全册完整版课件
- 商场装修改造施工组织设计
- 统编版一年级语文上册 第5单元教材解读 PPT
- 加减乘除混合运算600题直接打印
- ASCO7000系列GROUP5控制盘使用手册
评论
0/150
提交评论