2022年湖北省黄石市黄石港区第十四中学九年级数学上册期末达标检测模拟试题含解析_第1页
2022年湖北省黄石市黄石港区第十四中学九年级数学上册期末达标检测模拟试题含解析_第2页
2022年湖北省黄石市黄石港区第十四中学九年级数学上册期末达标检测模拟试题含解析_第3页
2022年湖北省黄石市黄石港区第十四中学九年级数学上册期末达标检测模拟试题含解析_第4页
2022年湖北省黄石市黄石港区第十四中学九年级数学上册期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.一块矩形菜地的面积是120平方米,如果它的长减少2米,菜地就变成正方形,则原菜地的长是()A.10 B.12 C.13 D.142.如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为()A.9 B.12 C.18 D.243.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为()A.20° B.25° C.30° D.50°4.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A. B. C. D.5.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=54006.如图,在中,,,,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A.1.6 B.1.8 C.2 D.2.67.已知,当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,则m的值为()A.﹣5 B.﹣1 C.﹣1.25 D.18.关于的一元二次方程有一个根是﹣1,若二次函数的图象的顶点在第一象限,设,则的取值范围是()A. B. C. D.9.下列是电视台的台标,属于中心对称图形的是()A. B. C. D.10.抛物线y=2(x-1)2-6的对称轴是().A.x=-6 B.x=-1 C.x= D.x=1二、填空题(每小题3分,共24分)11.正六边形的边长为6,则该正六边形的面积是______________.12.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.13.有一座抛物线形拱桥,正常水位时桥下水面宽为,拱顶距水面,在如图的直角坐标系中,该抛物线的解析式为___________.14.点关于原点的对称点的坐标为__________.15.计算:cos45°=________________16.布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_______.17.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为_____.18.在中,,,,将沿轴依次以点、、为旋转中心顺时针旋转,分别得到图?、图②、…,则旋转得到的图2018的直角顶点的坐标为________.三、解答题(共66分)19.(10分)某养猪场对猪舍进行喷药消毒.在消毒的过程中,先经过的药物集中喷洒,再封闭猪舍,然后再打开窗户进行通风.已知室内每立方米空气中含药量()与药物在空气中的持续时间()之间的函数图象如图所示,其中在打开窗户通风前与分别满足两个一次函数,在通风后与满足反比例函数.(1)求反比例函数的关系式;(2)当猪舍内空气中含药量不低于且持续时间不少于,才能有效杀死病毒,问此次消毒是否有效?20.(6分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.小丽;如果以每千克10元的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以每千克13元的价格销售,那么每天可获取利润750元.(1)已知该水果每天的销售量y(千克)与销售单价x(元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系,并求出这个函数关系式;(2)设该超市销售这种水果每天获取的利润为W(元),求W(元)与x(元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?21.(6分)某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润,商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件;若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的函数关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).22.(8分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.23.(8分)如图,在中,,,以为原点所在直线为轴建立平面直角坐标系,的顶点在反比例函数的图象上.(1)求反比例函数的解析式:(2)将向右平移个单位长度,对应得到,当函数的图象经过一边的中点时,求的值.24.(8分)为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).25.(10分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.26.(10分)如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'.(1)画出△A'B'C',并写出点A',B',C'的坐标;(2)求经过点B',B,A三点的抛物线对应的函数解析式.

参考答案一、选择题(每小题3分,共30分)1、B【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【详解】设原菜地的长为,则原矩形菜地的宽由题意得:解得:,(不合题意,舍去)故选:B【点睛】本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.2、D【分析】根据位似图形的性质,再结合点A与点的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:∵△ABC与△是以坐标原点O为位似中心的位似图形,且A为的中心,∴△ABC与△的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△的面积等于4倍的△ABC的面积,即.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3、B【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到,然后根据圆周角定理计算∠ADC的度数.【详解】∵的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴,∴∠ADC=∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.4、C【分析】根据图中符号所处的位置关系作答.【详解】解:从立体图形可以看出这X,菱形和圆都是相邻的关系,故B,D错误,当x在上面,菱形在前面时,圆在右边,故A错误,C正确.故选C.【点睛】此题主要考查了展开图折叠成几何体,动手折叠一下,有助于空间想象力的培养.5、B【详解】根据题意可得整副画的长为(80+2x)cm,宽为(50+2x)cm,则根据长方形的面积公式可得:(80+2x)(50+2x)=1.故应选:B考点:一元二次方程的应用6、A【分析】由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,,∵,,∴为等边三角形,∴,∴,故选A.【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB7、A【分析】根据题意,分情况讨论:当二次函数开口向上时,在对称轴上取得最小值,列出关于m的一次方程求解即可;当二次函数开口向下时,在x=-1时取得最小值,求解关于m的一次方程即可,最后结合条件得出m的值.【详解】解:∵当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,∴m>0,当x=1时,该函数取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0时,当x=﹣1时,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故选:A.【点睛】本题考查了二次函数的最值问题,注意根据开口方向分情况讨论,一次方程的列式求解,分情况讨论是解题的关键.8、D【分析】二次函数的图象过点,则,而,则,,二次函数的图象的顶点在第一象限,则,,即可求解.【详解】∵关于的一元二次方程有一个根是﹣1,∴二次函数的图象过点,∴,∴,,则,,∵二次函数的图象的顶点在第一象限,∴,,将,代入上式得:,解得:,,解得:或,故:,故选D.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用9、C【解析】根据中心对称图形的概念即可求解.【详解】A、不是中心对称图形,故此选项错误;

B、不是中心对称图形,故此选项错误;

C、是中心对称图形,故此选项正确;

D、不是中心对称图形,故此选项错误.

故选:C.【点睛】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.10、D【解析】根据抛物线的顶点式,直接得出结论即可.【详解】解:∵抛物线y=2(x-1)2-6,

∴抛物线的对称轴是x=1.

故选D.【点睛】本题考查了二次函数的性质,要熟悉二次函数的顶点式:y=a(x-h)2+k(a≠0),其顶点坐标为(h,k),对称轴为x=h.二、填空题(每小题3分,共24分)11、【分析】根据题意可知边长为6的正六边形可以分成六个边长为6的正三角形,从而计算出正六边形的面积即可.【详解】解:连接正六变形的中心O和两个顶点D、E,得到△ODE,因为∠DOE=360°×=60°,又因为OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,则三角形ODE为正三角形,∴OD=OE=DE=6,∴S△ODE=OD•OE•sin60°=×6×6×=9.正六边形的面积为6×9=54.故答案为.【点睛】本题考查学生对正多边形的概念掌握和计算的能力,即要熟悉正六边形的性质,也要熟悉正三角形的面积公式.12、2【分析】连接BF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据等边对等角的性质求出∠ABF=∠A,然后根据三角形的内角和定理求出∠CBF,再根据三角函数的定义即可求出CF.【详解】如图,连接BF,

∵EF是AB的垂直平分线,

∴AF=BF,

∴,,在△BCF中,∴,∴.故答案为:.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.13、y=-0.04(x-10)2+4【分析】根据题意设所求抛物线的解析式为y=a(x-h)2+k,由已知条件易知h和k的值,再把点C的坐标代入求出a的值即可;【详解】解:设所求抛物线的解析式为:y=a(x-h)2+k,并假设拱桥顶为C,如图所示:∵由AB=20,AB到拱桥顶C的距离为4m,则C(10,4),A(0,0),B(20,0)把A,B,C的坐标分别代入得a=-0.04,h=10,k=4抛物线的解析式为y=-0.04(x-10)2+4.故答案为y=-0.04(x-10)2+4.【点睛】本题考查二次函数的应用,熟练掌握并利用待定系数法求抛物线的解析式是解决问题的关键.14、【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:点关于原点对称点是,则点的坐标为:故答案为:【点睛】本题考查的关于原点对称的点的坐标的问题.15、1【分析】将cos45°=代入进行计算即可.【详解】解:cos45°=故答案为:1.【点睛】此题考查的是特殊角的锐角三角函数值,掌握cos45°=是解决此题的关键.16、【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【详解】解:∵一个布袋里装有3个红球和4个白球,共7个球,∴摸出一个球摸到红球的概率为:,故答案为:.【点睛】本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.17、【分析】等量关系为:红球数:总球数=,把相关数值代入即可求解.【详解】设红球有x个,根据题意得:,

解得:x=1.

故答案为1.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.18、(8072,0)【分析】利用勾股定理得到AB的长度,结合图形可求出图③的直角顶点的坐标;根据图形不难发现,每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合.【详解】∵∠AOB=90°,OA=3,OB=4,∴AB===5,∴旋转得到图③的直角顶点的坐标为(12,0);根据图形,每3个图形为一个循环组,3+5+4=12,因为2018÷3=672…2所以图2018的直角顶点在x轴上,横坐标为672×12+3+5=8072,所以图2018的顶点坐标为(8072,0),故答案是:(8072,0).【点睛】本题考查了旋转的性质与规律的知识点,解题的关键是根据点的坐标找出规律.三、解答题(共66分)19、(1);(2)此次消毒能有效杀死该病毒.【分析】(1)用待定系数法求函数解析式;(2)求正比例函数解析式,计算正比例函数和反比例函数的函数值为5对应的自变量的值,则它们的差为含药量不低于5mg/m3的持续时间,然后与21比较大小即可判断此次消毒是否有效.【详解】解:(1)设反比例函数关系式为.∵反比例函数的图像过点,∴.∴.(2)设正比例函数关系式为.把,代入上式,得.∴.当时,.把代入,得.∴.答:此次消毒能有效杀死该病毒.【点睛】本题考查了反比例函数的应用:能把实际的问题转化为数学问题,建立反比例函数的数学模型.注意在自变量和函数值的取值上的实际意义.也考查了一次函数.20、(1)y=﹣50x+800(x>0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.【解析】本题是通过构建函数模型解答销售利润的问题.依据题意首先确定学生对话中一次函数关系;然后根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w(元)与销售价x之间的函数关系,再依据函数的增减性求得最大利润.【详解】(1)当销售单价为13元/千克时,销售量为:750÷(13﹣8)=150千克,设:y与x的函数关系式为:y=kx+b(k≠0)把(10,300),(13,150)分别代入得:k=﹣50,b=800∴y与x的函数关系式为:y=﹣50x+800(x>0).(2)∵利润=销售量×(销售单价﹣进价),由题意得∴W=(﹣50x+800)(x﹣8)=﹣50(x﹣12)2+800,∴当销售单价为12元时,每天可获得的利润最大,最大利润是800元.(3)将w=600代入二次函数W=(﹣50x+800)(x﹣8)=600解得:x1=10,x2=14即:当销售利润为600元时,销售单价为每千克10元或14元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.21、(1);(2).【分析】(1)先利用待定系数法确定每月销售量y与x的函数关系式y=-30x+960;

(2)根据每月获得的利润等于销售量乘以每件的利润得到w=(-30x+960)(x-16),接着展开后进行配方得到顶点式P=-30(x-24)2+1920,然后根据二次函数的最值问题求解.【详解】(1)设y=kx+b,∵当x=20时,y=360;x=25时,y=210∴,解得∴y=-30x+960(16≤x≤32);(2)设每月所得总利润为w元,则w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+1920.∵-30<0∴当x=24时,w有最大值.即销售价格定为24元/件时,才能使每月所获利润最大,每月的最大利润为1920元.22、【解析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23、(1);(2)值有或【分析】(1)过点作于点,根据,可求出△AOB的面积8,由等腰三角形的三线合一可知△AOD的面积为4,根据反比例函数k的几何意义几何求出k;

(2)分两种情况讨论:①当边的中点在的图象上,由条件可知,即可得到C点坐标为,从而可求得m;②当边的中点在的图象上,过点作于点,由条件可知,,因此中点,从而可求得m.【详解】解:(1)过点作于点,如图1∵,∴,∴,,即(2)①当边的中点在的图象上,如图2∵,∴,,点,即∴②当边的中点在的图象上,过点作于点,如图3∵,,∴中点即∴综上所述,符合条件的值有或【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.24、(1)y=﹣x+70,自变量x的取值范围1000≤x≤2500;见解析;(2)每天的最大销售利润是22500元;见解析;(3)20≤m≤1.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=kx+b,把与代入y=kx+b得,,解得:,∴每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=﹣x+70,当y≥45时,﹣x+70≥45,解得:x≤2500,∴自变量x的取值范围1000≤x≤2500;(2)根据题意得,P=,∵﹣<0,P有最大值,当x<1500时,P随x的增大而增大,∴当x=1500时,P的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P=,∵对称轴为x=,∵1000≤x≤2500,∴x的取值范围在对称轴的左侧时P随x的增大而增大,≥2500,解得:m≥20,∴m的取值范围是:20≤m≤1.故答案为:20≤m≤1.【点睛】本题主要考查的是一次函数与二次函数的综合应用,关键是根据题意得到一次函数表达式,然后根据条件得到关于利润与销量的二次函数表达式,进而利用二次函数的性质求最值.25、(1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论