版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分数乘法教案范文7篇分数乘法教案范文7篇
作为一名人民教师,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?以下是为大家收集的分数乘法教案7篇,欢迎阅读与收藏。
分数乘法教案篇1
教学内容:
练习一
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:复习分数乘以整数和分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以整数和一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
学生能够熟练的计算出分数乘以分数和分数乘以整数的结果。
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?这些分数乘法运算有什么不同?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。分数乘以整数,整数乘以分子,分母不变。)
二、课堂练习
学生做第8题,让学生明白商场打折的意思,分别求出一个整数的几分之几是多少?如:=?
学生做第9题,注意让学生用分数乘以整数的知识求出梨、苹果、香蕉各占水果总数的多少?
学生做第10题,让学生计算一个分数的几分之几是多少?注意提醒学生及时约分。
学生做第11题,让学生先计算出分数乘法算式的得数再学会比较分数的大小。
学生做第12题,教师注意让学生观察统计图表,求出20xx年比20xx年增加多少元?
学生做第13题,让学生用整数乘以分数的知识来解决生活中有关分数的生活问题,注意提醒学生认清长度单位。
学生做第14题,教师注意让学生利用分数乘法学会解决生活中实际问题。
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
练习二
1510(米)15-10=5(米)
分数乘法教案篇2
教学目标
1.进一步理解分数乘整数的意义。
2.掌握分数乘整数的计算法则。
3.能够熟练准确地计算分数乘整数的计算题。
教学重点
分数乘整数的计算方法,能正确计算。
教学难点
理解先约分再计算能使计算简便。
教师指导与教学过程
学生学习活动过程
设计意图
一、复习分数乘整数的意义及计算法则
二、出示例题
1.出示3/4×6
教师引导学生能不能先约分再计算。
学生得出结论后教师讲解先约分后计算的格式。
你会填吗?
1/6+1/6+1/6+1/6=1/6×()
3/4+3/4+3/4+3/4+3/4
=3/4×()
2/25+2/25+2/25
=2/25×()
在计算分数乘整数时,用分数的分子(),分母()。
学生先用计算法则进行计算后进行约分。
学生进行计算并比较两种方法那种方法简单。
复习巩固分数乘整数的计算方法。
进一步应用分数乘整数的计算方法,体验先约分再计算。
教师指导与教学过程
学生学习活动过程
设计意图
2.练习
完成课本第3页的做一做
三、综合练习
1.练一练第1题
2.教师指导完成练一练第2题
学生完成后还可以估一估一个月、一年能滴多少水。
四、布置作业
完成练一练第3、4、5题
学生独立完成做一做
学生通过涂一涂,可以得到结果为10/15,再约分得到2/3。学生也可以先约分再计算。
学生根据老师的指导进行计算,并解释结果的实际意义。
借助图形语言,加深学生对分数乘整数的意义的理解。
巩固分数乘整数的计算方法,培养学生的节约意识。
板书设计:
分数乘整数
复习题:出示例题3/4×6
分数乘法教案篇3
重点:
(1)理解分数乘以整数的意义
(2)理解并掌握分数乘以整数的计算法则
难点:
在计算的过程中,能约分的要先约分,然后再乘。
设计思想:
发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。
教学过程:
一、设疑激趣:
1.下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
2.计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==33=
3=这个算式表示什么?为什么可以这样计算?
教师板书++=3=
3.出示:(课件1)
这道题目又该怎样计算呢?
二、自主探索:
1.出示例1,读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、学生交流、质疑:
1.学生汇报,并说一说你是怎样想的?
方法a.++===(块)
方法b.3=++====(块)
2.比较这两种方法,有什么联系和区别?
(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)
教师根据学生的回答,板书++=3
3.为什么可以用乘法计算?
(加法表示3个相加,因为加数相同,写成乘法更简便。)
4.3表示什么?怎样计算?
(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)
5.提示:为计算方便,能约分的要先约分,然后再乘。
(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)
四、归纳、概括:
1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)
2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)
(根据学生的回答,教师进行板书)
五、巩固、发展
1.巩固意义:
(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)
(2)改写算式:
+++=()()
+++++++=()()
(3)只列式不计算:3个是多少?5个是多少?
2.巩固法则:
(1)计算(说一说怎样算)
462148
(说一说,为什么先约分再相乘比较简便?以8为例来说明)
(2)应用题:
a.一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
b.美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(3)对比练习:
a.一条路,每天修千米,4天修多少千米?
b.一条路,每天修全路的,4天修全路的几分之几?
3.发展提高:
(1)出示(课件1):说说怎样想?
(2)出示(课件2):说说怎样想?
分数乘法教案篇4
教学目标
1.理解和掌握“求一个数的几分之几是多少”的分数应用题的结构和解题方法.
2.渗透对应思想.
教学重点
理解应用题中的单位“1”和问题的关系.
教学难点
1.理解“求一个数的几分之几是多少”的应用题的解题方法.
2.正确灵活的判断单位“1”.
教学过程
一、复习、质疑、引新
1.说出、、米的意义.
2.列式计算
20的是多少?6的是多少?
学生完成后,可请同学说一说这两个题为什么用乘法计算?
3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算.这是乘
法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(出示课题:分数应用题)
二、探索、质疑、悟理
(一)教学例1(也可以结合学生的实际自编)
学校买来100千克白菜,吃了,吃了多少千克?
1.读题.理解题意,知道题中已知条件和所求问题;搞清数量间的'关系.
2.分析.
教师提问:重点分析哪句话呢?“吃了”这句话是分率句.是什么意思呢?
(就是把100千克白菜平均分成5份,吃了这样的4份).
3.画图.(演示课件:分数乘法应用题1)
画图说明:a.量在下,率在上,先画单位“1”
b.十份以里分份,十份以上画示意图.
c.画图用尺子,用铅笔.
4.尝试解答.
解法一:用自己学过的整数乘法做
(千克)
解法二:
5.小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答.
(二)巩固练习
六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?
1.把哪个数量看作单位“1”?
2.为什么用乘法计算?
(三)教学例2
例2.小林身高米,小强身高是小林的,小强身高多少米?
1.演示课件:分数乘法应用题2
2.求参加合唱队有多少人实际上就是求米的是多少,数学教案-分数乘法应用题,小学数学教案《数学教案-分数乘法应用题》。
3.列式:(米)
答:小强身高米.
(四)变式练习
小强身高米,小林身高是小强的倍,小林身高多少米?
三、归纳、总结
1.今天所学题目为什么用乘法计算
2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?
共同点:都是已知单位“1”和分率,求单位“1”的几分之几是多少。
从分率可入手分析
四、训练、深化
(一)先分析数量关系,再列式解答
1.一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?
2.一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?
(二)提高题
1.一桶油400千克,用去,用去多少千克?还剩多少千克?
2.一桶油400千克,用去吨,用去多少千克?还剩多少千克?
五、课后作业
(一)修路队计划修路4千米,已经修了。修了多少千米?
(二)一头鲸长7米,头部长占。这头鲸的头部长多少米?
(三)成昆铁路全长1100千米,桥梁和隧道约占全长的。桥梁和隧道约长多少千米?
六、板书设计
数学教案-分数乘法应用题
分数乘法教案篇5
教学内容:第45页例题4、5
教学目标:
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
教学重点、难点:
分数乘分数的计算法则。
对策:
使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
一、复习
1、计算下列各式
1/15╳5=2╳2/3=7/8╳14=15/6╳24=
2、说说整数与分数相乘的计算方法?先约分再计算还是先计算再约分方便?
二、新授
1、出示例题4题目和图。
2、理解题目意思。
3、你知道左边图中画斜线的部分占1/2的几分之几?是这张纸的几分之几?你是怎样想的?
4、右边呢?
5、你能看图用算式来表示结果吗?填在书上。组织交流。
6、总结:求一个分数的几分之几是多少,也可以用乘法计算。
7、探究:观察这两个算式,猜才分数与分数相乘是怎样计算的?
学生说出自己的猜想。
验证猜想,教学例题5。
(1)出示例题5
(2)在图中画斜线表示计算结果,再填空。
(3)组织交流:你发现积的分子、分母与两个因数的分子、分母各有什么关系?
(4)总结得出:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
三、巩固
1、出示1/42/38/93/4
2、学生独立完成,指名板演
3、可能出现两种:先乘再约分或先约分再相乘
引导学生比较这两种方法谁更好?如果是24/7755/8呢?再次体会到先约分再计算比较简便。
4、介绍简便书写格式,发现可以在算式上直接约分,再计算,提高速度。
四、比较
出示2/113和45/6,先计算,再比较,分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?
所以不管上分数乘整数还是分数,都可以看作是分数乘分数的计算方法来计算。
五、巩固提高
您现在正在阅读的苏教版《分数乘法》第四课时教学设计文章内容由收集!本站将为您提供更多的精品教学资源!苏教版《分数乘法》第四课时教学设计1、第46页上的练一练
先独立计算在书上,指名板演,再组织交流。
2、第48页上的第1题
读题先在图中表示出来,再列式计算。组织交流想法。
3、第48页上的第3题
先独立判断,将不对的改正过来。组织交流:是否正确?错在哪里?怎样改?最后是多少?
4、第48页上的第4题
先独立计算,再组织交流:上下两题有什么相同的地方?结果怎样?
六、布置作业:练习九2、5
课前思考:
教学例4和例5时,我想如果借助投影仪依次呈现长方形图,可能会对学生思考问题有帮助,特别是对于一些学习困难生来说,这样便于他们直观地看出所求部分占了这张纸的几分之几。当然,最后还是要让学生从直观图中抽象出本质的东西,即认识到分数与分数相乘的计算方法。
在试一试的教学中,要分三个层次进行。第一层次是计算分数乘分数时用先约分再计算的方法;第二层次尝试用分数乘分数的方法计算分数乘整数;第三层次学习直接在题中约分的方法来计算分数乘法。估计这么多的计算方法一下子呈现在学生面前,会使一部分学生不知所措。课中教师要多关注学生学习情况,及时调整教学行为。
课前思考:
例4的教学可分三步进行,第一,看图理解1/2的1/4和1/2的3/4表示的意义,联系图弄清分别是这张纸的几分之几。第二,进一步明确求1/2的1/4或1/2的3/4是多少,也可以用乘法。第三,前两步的思考过程完成教材上的填空,建立关于分数乘分数计算方法的初步猜想。
例5可以根据例4的猜想,算出算式的积,再通过画图验证。教学时让学生观察比较几个算式的因数和积,通过交流归纳出分数乘分数的计算方法。
在介绍简便书写格式,发现可以在算式上直接约分再计算,学生可能在整数乘分数时会把整数同分子约分,教学时要进行强调。
课后反思:
本节课在教学时,我借助直观的图形,不仅让学生掌握分数与分数相乘的计算方法,更重要的是让学生理解分数乘分数的含义。并在例题教学之后增加了一个画一画环节----(1)教师写一个分数乘分数的算式,让一个学生上黑板画图表示算式的意义,要求边画边说为什么怎样画;(2)再写一个分数乘分数的算式,让全体学生独立画图表示,再同桌交流,最后指名交流。这样学生对分数乘分数的意义有了更深的认识。
在第48页第4题练习时,加强了分数乘法与分数加法的对比,强化计算方法区别,防止学生对两种计算出现混淆。
课后反思:
反思本节课的教学,在例4的教学中由于要借助直观图来思考1/2的1/4和1/2的3/4是这张纸的几分之几,所以忽略了指导学生理解1/2的1/4和1/2的3/4所表示的意义,这是今天这节课上的一处败笔。因为对于分数乘分数的计算方法的推导和理解、运用,对于学生来说反而不存在太大的问题。
从学生作业情况来看,遇到整数乘分数时,往往出现错误,分析原因是计算时不会把整数改写成分母是1的分母来计算,出现分子和分子约分的现象;还有些学生约分时仍存在错误,这样就造成乘法计算错误。
估计明天的课上计算分数连乘时问题会更多,教学时要思考对策。
课后反思:
通过教学,学生能理解分数乘分数的意义,掌握分数乘分数的计算方法,并通过学习分数乘分数的计算方法适用于分数与整数相乘,体会数学知识的内在联系,感受数学知识和方法的应用价值。
对于能约分的可以直接在题目上约,课堂上进行了讲解和示范,但在做作业时考虑到有部分学生约分时容易出错,我还是让学生写出了分母和分母相乘,分子和分子相乘的那一步,再约分,最后计算。从作业的反馈情况来看学生的计算的正确率也比较高
分数乘法教案篇6
第一单元
分数乘法
第五课时
小数乘分数
教学内容:
教材第8页例5,做一做,练习二1~4。
教学目标:
1、在解决问题的过程中学习并掌握小数乘分数的计算方法。
2、经历小数乘分数的计算方法的探究过程。
3、体会算法多样化的数学思想,提高计算能力。
教学重点:
掌握小数乘分数的计算方法。
教学难点:
灵活选择不同的计算方法,熟练地进行小数乘分数的计算。
教学过程:
一、复习导入。
1、计算
交流时让学生说一说计算方法和计算过程中的约分方法。
2、把下面的小数化成分数,分数化成小数。
1.2()
0.4()
3.5()
1.25()
让学生说一说怎样将一个小数化成分数?
二、探索新知
1、例题5:松鼠的尾巴长度约占身体长度的。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。
(1)提取题中的已知条件和所求问题
已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。
所求问题:松鼠欢欢的尾巴有多长?
(2)确定单位1,根据松鼠的尾巴长度约占身体长度的34可知,应把松鼠欢欢的身体长看作单位1,单位1已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的34是多少,用乘法计算,列式为2.134
启发观察,这个算式和我们前面学习的分数乘法有什么不同?
(3)探讨小数乘分数的计算方法。
提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。
学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把化成小数。汇报交流计算方法,教师结合交流情况进行板书。
小数化成分数:==(分米)
分数化成小数:=2.10.75=1.575(分米)
3、解决问题二。
(1)出示问题:松鼠乐乐的尾巴有多长?
(2)学生独立解答。
组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。
学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?
当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书
小数和分母约分:(分米)
4、观察比较,回顾思考。
提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)
三、巩固练习。
1、教材第8页做一做。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。
2、教材第10页练习二第2题。
3、教材第10页练习二第3题。
分数乘法教案篇7
教学内容:
教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少?9个11是多少?8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数。
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
(1)分析演示
题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃个意思什么?(每人吃了整个蛋糕的)
确定标准量(单位1)和比较量。每人吃了整个蛋糕的,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式++
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
(3)比较和125两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点:是分数乘整数,125是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问:表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)
观察结果:的分子部分23就是算式中的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
以下为精品推荐,可自行删改!
推荐一:《分数乘法教案四篇》
【精选】分数乘法教案四篇
作为一位无私奉献的人民教师,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?以下是为大家收集的分数乘法教案4篇,希望能够帮助到大家。
分数乘法教案篇1
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:理解数量关系。
教学难点:根据多几分之几或少几分之几找出所求量的对应分率。
教学过程:
一、复习
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去。(2)用去一部分钱后,还剩下。
(3)一条路,已修了。(4)水结成冰,体积膨胀。
(5)甲数比乙数少。
2、口头列式:
(1)32的是多少?(2)120页的是多少?
(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?
(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。
二、新授
1、教学例2
(1)运用线段图帮助学生分析题意,寻找解题方法。
(2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。
降低?分贝
现在?分贝
80分贝
(1)四人小组讨论,根据线段图提出解决办法,并列式计算。
解法一:80-80×=80-10=70(分贝)
现在?分贝
80分贝?
(4)鼓励学生根据题意、结合线段图,想出第二种解答方法。
解法二:80×(1-)=80×=70(分贝)
(5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。
2、巩固练习:P20“做一做”
3、教学例3
(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多”表示什么意思?(组织学生讨论,说说自己的理解)
(2)引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的”。着重让学生说说谁与谁比,把谁看作单位“1”。
(3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。
解法一:75+75×=75+60=135(次)
解法二:75×(1+)=75×=135(次)
4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)
三、练习
1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。
2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。
四、布置作业
练习五第7、8、9、10题。
课后反思:
例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。
分数乘法教案篇2
1、分数乘法
(1)分数乘整数
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教学过程:
一、复习
1.出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?9个11是多少?8个6是多少?
(2)计算:
1/6+2/6+3/6=3/10+3/10+3/10=
2.引出课题。
++这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、新授
1、利用3/10+3/10+3/10教学分数乘法。
(1)这道加法算式中,加数各是多少?(都是)
(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/103)
(3)3/10+3/10+3/10=9/10,那么3/10+3/10+3/10=3/103,所以3/103=9/10
2、出示例1,画出线段图,学生独立列式解答。
(1)引导学生看图,理解人跑一步的距离相当于袋鼠跳一下的,就是把袋鼠跳一下的距离即这一整条线段看作单位1。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么人跑3步的距离相当于袋鼠跳一下的几分之几?就是求3个是多少?(列式:3=)
3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、练习:练习完成做一做第2题。
5、教学例2
(1)出示6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
三、练习
1、完成做一做的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2、做一做第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)
四、作业
练习二第1、2、4题。
(2)一个数乘分数
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教学过程:
一、导入
1、计算下列各题并说出计算方法。
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新课
1、教学例3
(1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式工作效率工作时间=工作总量,学生列式:
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即的,由此得出这个乘法算式表示的是多少?
(3)根据直观的操作结果,得出=,根据刚才操作的过程和结果推导出计算方法:==。
(4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
2、相关练习:练习二第5题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据速度时间=路程的数量关系列出算式。
(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式。
(3)学生独立解答5分钟飞行多少千米?,讲评中介绍分数乘整数的另一种格式。
5、巩固练习:P11做一做(注意提醒学生要先观察能否约分,再着手计算)。
三、练习
1、练习三第6题
(1)求2枝长多少分米,就是求2个是多少?算式:2
(2)求枝或枝长多少分米,就是求的是多少,或的是多少。
2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)
四、作业
练习二第3、7、8、10题。
(3)分数混合运算和简便运算
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教学过程:
一、复习
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)362+15(2)56+73(3)15(34-27)
二、新授
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
(1)+(2)-(3)-(4)+
2、复习整数乘法的运算定律
(1)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25740.36101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)出示:,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)出示:+,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为4和4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、练习
P14做一做:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。
(4)练习课
教学目标:
1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。
2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。
教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。
教学难点:熟练掌握运算定律,准确、合理地进行简便计算。
教学过程:
一、复习
1、复习分数混合运算的运算顺序。
2、复习乘法的简便运算定律
乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
二、巩固练习
1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。
2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如:-=(1-);(5-)既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。
3、练习三第2题:一朵花要用张纸,一个同学做了9朵,列式9,另一个同学做了11朵,列式11,他们一共做了9+11(朵),学生还可能这样列式:(9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。
4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。
5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。
6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。
三、布置作业
完成相关的练习册。
(5)分数乘法整理与复习
教学目的:
1.分数乘法的计算方法
2.分数乘加、乘减混合运算
3.熟练掌握运算定律,并运用运算定律进行简便计算。
教学重点:
1.分数乘法的计算方法
教学难点:
运算定律进行简便计算
教学过程:
一、复习分数乘法的计算方法
30===
60===
12==
二、复习分数乘加、乘减混合运算。
+1-(1-)
7+120(+)
三、复习分数的运算定律并进行简便计算。
+12--48+4824(-)
四、相关文字题复习
1、4的与的4倍的和是多少?2、的比它的多多少?
五、相关的解决问题。
1、一块长方形纸夹板长米,宽是长的,这块纸夹板的周长和面积分别是多少?
2、某菜场运来茄子800千克,第一天卖完了全部的,第一天卖了多少千克,还剩下多少茄子没有卖?
3、一个平行四边形,底是米,高是底的,这个平行四边形的面积是多少?
六、拓展练习。
分数乘法教案篇3
教学目标:
1.通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。
2.通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。
3.通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。
教学重点:
掌握分数乘分数的计算方法,并能熟练计算。
教学难点:
理解分数乘分数的乘法意义及算理。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1.(课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几?()
2.如果取这的,现在得到的是整个正方形的几分之几?(看图得出结论)
3.如果再取这的,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)
【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】
二、合作探究(小组合作,解决问题)
出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)
(一)探究几分之一乘几分之一的算理算法
1.求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)
求一个数的几分之几,我们可以用乘法来计算。
2.等于多少呢?说说你的想法,并把你的想法在纸上写下来。
3.学生进行尝试(可引导学生用画图的方式来解释自己的想法)。
4.进行交流反馈
重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固
把1个正方形看作1公顷,先平均分成2份,每份表示公顷,再把公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是公顷。
5.得出结果
根据大家的想法,。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?
6.猜想计算方法
观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?
【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】
(二)探究几分之几乘几分之几的算理算法
1.尝试猜想
请你试着用这个方法解决第二个问题:求公顷的,用乘法算式表示就是。根据我们刚才的想法,结果应该是?(公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。
2.探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)
3.验证反馈
(1)请几个采用不同验证方法的.学生进行一一展示。
(预计方法:A.画图(图形或线段);B.转化成小数再进行计算;C.利用分数的意义进行计算)
(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。
4.得出结论
看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】
三、展示交流(展示交流,调拨归纳)
简化计算过程
根据我们所得的结论,试着解决下面的问题
出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是千米/分。
(1)李叔叔的游泳速度是乌贼的。李叔叔每分钟游多少千米?
(2)乌贼30分钟可以游多少千米?
1.读题,独立列式并解答。
2.反馈
(1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。
(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。
(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。
3.练习
例4做一做1。
【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】
四、拓展总结(应用拓展,盘点收获)
1.基础练习
(1)先看数再计算(练习一6、7两题)
反馈校对、纠错。
在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。
预计错题,估计错例:由于4和的分子相同,学生有可能会将整数4与分子4相约分,在计算时,结果错算成。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。
【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】
(2)完成例3、例4做一做剩下的题
反馈校对、纠错。
在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。
2.练习提升
在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?
○○○○
反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。
(1)题1、题3主要引导学生从分数乘法的意义来理解;
(2)题2、题4主要是对分数计算方法的巩固。
【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】
3.拓展总结
这节课我们学习了什么?我们是怎样得出这些结论的?
没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。
【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】
分数乘法教案篇4
一、单元分析
本单元教材是在学生掌握了整数乘法,分数的意义、性质,以及分数加、减法的计算等知识的基础上进行教学的。内容包括分数乘法、利用分数乘法解决问题、倒数的认识。这些内容都属于分数中的基本知识和技能。利用这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法,以及百分数知识的重要基础。
二、单元学习目标
1.建立分数乘法的原型,掌握分数乘法的计算方法,能够比较熟练地进行计算。
2.理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
3.会利用分数乘法解决一些实际问题。
4.使学生理解倒数的意义,掌握求倒数的方法。
三、单元课时总数:9课时
课题:分数乘整数1课时上课时间:年月日
教材分析
这部分教材是在已学的整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。因此,教材通过人跑一步相当于袋鼠跳一下的2/11。问人跑3步的距离是袋鼠跳一下的几分之几?这一情境来让学生理解什么样的问题可以用乘法来解决。在此基础上再进行分数乘整数的计算方法的学习。通过分数加法来进一步学习分数乘整数的计算方法。
学情分析
学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法导出分数乘整数时只需把分子和整数相乘的积作分子,分母不变。在此基础上总结出分数乘整数的计算方法。学生在刚学习分数乘法时可能会有时想不到先约分。所以教师在教学时在这方面还要加以强调。
教学目标
1、使学生理解分数乘法的原型,掌握分数乘法的计算方法,能够正确地进行计算.
2、培养学生的计算能力。
3、激发学生学习兴趣,热爱学习数学。
教学过程备注
活动一:创设情境,初步理解分数乘法的原型
教师出示例1:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?
让学生审题后独立试做。
学生可能会出现以下两种做法:
(1)学生用连加法列式
(2)用乘法列式
借助于分数加法来理解理分数乘法的原型。
活动二:教学分数乘整数的计算方法
1、师:++和3都是求3步的距离是袋鼠跳一下的几分之几。你又都是怎样计算的呢?
全班交流,感觉分数乘整数的计算方法。
总结分数乘整数是怎样计算的:用分数的分子和整数相乘的积作分子,分母不变。
2、教学例2:6=
让学生试做,然后教师强调计算时能约分的可以先约分,再计算。教师板书。
活动三:反馈练习
1、完成9页中的做一做。
教师注意强调学生的书写格式以及能约分的要先约分。
注意体会在什么情况下用分数乘法来解决问题。
2、完成练习二中的1、2题。
活动四:质疑总结。
推荐二:《有关分数乘法教案三篇》
有关分数乘法教案三篇
作为一位杰出的老师,通常需要准备好一份教案,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写才好呢?下面是收集整理的分数乘法教案3篇,仅供参考,欢迎大家阅读。
分数乘法教案篇1
本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。
分数与整数相乘
用乘法求几个相同分数的和(例1)
用乘法求整数的几分之几是多少(例2)
求一个数的几分之几是多少的实际问题(例3)练习八
分数乘分数
分数乘分数(例4、例5)
分数连乘(例6)练习九
倒数
倒数的意义,求倒数的方法(例7)练习十
整理与练习
教材在编排上有以下特点。
第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。
乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。
第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。
先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。
整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。
分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。
第三,编排倒数知识,为分数除法作准备。
分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
一、例1着重教学分数与整数相乘的算法。
首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。
例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数:3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。
例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。
二、例2着重教学用乘法求一个数的几分之几是多少。
10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。
在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:
首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。
然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。
沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。
练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。
例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。
三、例3用分数乘法解决实际问题。
例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。
解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。
比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是:绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。
第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。
四、例4、例5构建分数乘法的计算法则。
分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。
构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。
例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题:1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的`3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。
例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。
两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。
第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。
五、例6教学分数连乘的算法和技巧。
例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。
例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。
六、例7教学倒数的知识。
倒数的知识主要是两点:一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。
教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。
求已知数的倒数分三个层次教学:先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。
第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。
分数乘法教案篇2
分数乘法
1、分数乘法的意义和计算法则:
课时:1课时。总课时:1课时。执行时间:
课题:分数乘整数。
教学目的:
1、使学生理解分数乘整数的意义;
2、握分数乘整数的计算法则,并能够正确地进行计算。
3、培养学生的学习兴趣。教具:多媒体教学课件。
教学过程():
一、复习引入
1、5个12是多少?怎么样列式?
算式:12+12+12+12+12=60或12×5=60
小结:求几个相同加数的和,可以用加法算,也可以用乘法算。
2、计算:
2/7+2/7+2/73/10+3/10+3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高新技术行业月度个人工作计划
- 五年级上册英语单词青岛版
- 邢台学院《物流运筹学》2023-2024学年第一学期期末试卷
- 邢台学院《工艺基础》2021-2022学年第一学期期末试卷
- 融资合同模板三篇
- 文化活动与展示策划计划
- 西京学院《C语言程序设计》2023-2024学年第一学期期末试卷
- 西华师范大学《量子力学》2022-2023学年第一学期期末试卷
- 快餐店的运营规划
- 2024年01月11054流通概论期末试题答案
- 毛概课件第六章
- 【MOOC】城市生态学-华东师范大学 中国大学慕课MOOC答案
- 国家开放大学2024年12月《思想道德与法治试卷2-版本1》大作业参考答案
- 土地整治培训资料
- 2023年12月英语六级真题及答案-第3套
- 我骄傲-我是中国人(分角色朗诵稿)
- (100题)2024时事政治考试题库
- 新视野大学英语(第四版)读写教程1(思政智慧版)课件 Unit 5 Friendship across border and gender
- 2024年中远海运集团招聘笔试参考题库含答案解析
- 办公大楼物业服务投标方案(技术方案)
- 大学体育理论(山东联盟)智慧树知到课后章节答案2023年下泰山学院
评论
0/150
提交评论